Skip to main content
Advanced Search

Filters: Tags: Groundwater-Flow Modeling (X) > partyWithName: U.S. Geological Survey (X)

54 results (75ms)   

Filters
Date Range
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
thumbnail
This dataset includes well logs used in the creation of the Cortland hydrogeologic framework. Well logs were used from multiple sources (DEC, DOT, NWIS) and were a crucial component in generating hydrogeologic layer elevations and thicknesses. Well logs are available in their original form on GeoLog Locator (https://webapps.usgs.gov/GeoLogLocator/#!/) and provided here in the digitized form (shapefiles and feature classes), which were used in the generation of the hydrogeologic framework.
thumbnail
Digital hydrogeologic datasets were developed for the Rondout-Neversink study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters, lidar minimum elevation raster, lacustrine extent polygon, valley-fill extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot discretization to match the model grid cell size.
thumbnail
This dataset includes well logs used in the creation of the Olean hydrogeologic framework. Well logs were used from multiple sources (DEC, DOT, NWIS, ESOGIS, and recently digitized archived material) and were a crucial component in generating hydrogeologic layer elevations and thicknesses. Well logs are available in their original form on GeoLog Locator (https://webapps.usgs.gov/GeoLogLocator/#!/) and provided here in the digitized form (shapefiles and feature classes), which were used in the generation of the hydrogeologic framework.
thumbnail
This dataset includes "smoothing points" used in the creation of the Jamestown hydrogeologic framework. Smoothing points were manually added and were used to enhance interpolated layers using geologic assumptions and include: valley edge points, centerline bedrock points, and upland bedrock SSURGO points.
The town of Greene is located in Chenango County, New York. Previous USGS reports here include Open-File Report 2003-242 (Hetcher and others, 2003), and Scientific Investigations Map 2914 (Hetcher-Aguila and Miller, 2005). The five child pages below break the data up into georeferenced and digitized previous report data, interpreted geologic information, well logs, supplemental point data, and interpolation statistics.
thumbnail
An integrated hydrologic-flow model, called the Central Platte Integrated Hydrologic Model, was constructed using the MODFLOW-One-Water Hydrologic Model code with the Newton solver. This code integrates climate, landscape, surface water, and groundwater-flow processes in a fully coupled approach. This study provided the Central Platte Natural Resources District (CPNRD) with an advanced numerical modeling tool to assist with the update of their Groundwater Management Plan by providing them information on modeled future GW levels under different climate scenarios and management practices. This tool will allow the CPNRD to evaluate other scenarios as management changes in the future. A predevelopment model simulated...
thumbnail
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
thumbnail
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
thumbnail
This dataset includes georeferenced TIFF files from two separate reports for the Jamestown study area that have been digitized into feature classes within ArcGIS. Not all digitized and georeferenced data was necessarily used in the final interpolations, however they may have contributed to understanding the local hydrogeology.
thumbnail
This data release contains model simulation results of a particle tracking analysis to delineate areas that provide recharge to surface waters and public-supply wells on Long Island, NY. The analysis partitions the recharge areas based on particle travel times of greater than or less than 10 years to reach the receiving surface water or well. The simulation was performed using a regional-scale numerical model of the Long Island aquifer system (Walter and others, 2020a and 2020b) for average 2005-2015 conditions. The model implements MODFLOW-NWT (Niswonger and others, 2011) to represent steady-state groundwater pumping and aquifer recharge conditions; recharge areas were identified and partitioned using the particle-tracking...
thumbnail
Digital hydrogeologic datasets were developed for the Greene study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters, lidar minimum elevation raster, lacustrine extent polygon, valley-fill extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot discretization to match the model grid cell size.
thumbnail
Digital hydrogeologic datasets were developed for the Jamestown study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters (where present), LIDAR minimum elevation raster, lacustrine extent polygon, valley-fill extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot discretization to match what was done in previous work.
thumbnail
This dataset includes georeferenced TIFF files from two separate reports for the Fishkill and Wappinger Falls study area that have been digitized into feature classes within ArcGIS. Not all digitized and georeferenced data was necessarily used in the final interpolations, however they may have contributed to understanding the local hydrogeology.
thumbnail
This dataset includes georeferenced tiff files from two separate reports for the Greene study area, where appropriate data have been digitized into feature classes within ArcGIS. Not all digitized and georeferenced data was necessarily used in the final interpolations, however they may have contributed to understanding the local hydrogeology
The city of Cortland is located in Cortland County, New York. Previous USGS reports here include Water-Resources Investigations Report 96-4255 (Miller and others, 1998), and Open-File Report 81-1022 (Miller and Brooks, 1981). The five child pages below break the data up into georeferenced and digitized previous report data, interpreted geologic information, well logs, supplemental point data, and interpolation statistics.
thumbnail
This dataset includes georeferenced tiff files from two separate reports for the Cortland study area that have been digitized into feature classes within ArcGIS. Not all digitized and georeferenced data was necessarily used in the final interpolations, however they may have contributed to understanding the local hydrogeology
thumbnail
This data release contains the input, output, and model code used to run a transient simulation of a previously published (Walter and others, 2020) steady-state regional model of Long Island, N.Y. The original model code was updated to MODFLOW 6 (version 6.3.0) and incorporates monthly transient stress periods to simulate conditions from 2005-2019 following methods described in Walter and others (2020). Selected remedial stresses (groundwater extraction and return) were incorporated for select locations in southeastern Nassau County. No modifications were made to the hydrologic boundaries, model layers, or hydraulic properties specified in the original model. A uniform value of 0.25 was used to represent specific...
thumbnail
The Mississippi Alluvial Plain (MAP) is one of the most important agricultural regions in the United States and underlies about 32,000 square miles of Missouri, Kentucky, Tennessee, Mississippi, Louisiana, and Arkansas. The MAP region supports a multibillion-dollar agricultural industry. The MAP is part of the Mississippi Embayment with several water-bearing units that make up the Mississippi Embayment Regional Aquifer System (MERAS). These water bearing units include the Mississippi River Valley Alluvial aquifer, Claiborne aquifers and Wilcox aquifers. In northeastern Arkansas, the Cache area has been designated as a critical groundwater areas because of decades of groundwater declines that resulted from past and...
thumbnail
This dataset includes georeferenced tiff files from three separate reports for the Rondout Neversink study area that have been digitized into feature classes within ArcGIS. Not all digitized and georeferenced data was necessarily used in the final interpolations, however they may have contributed to understanding the local hydrogeology.


map background search result map search result map Cortland study area Cortland study area georeferenced TIFFs and digitized data Well Logs for the Cortland sourcewater study area in upstate New York Greene study area hydrogeologic framework layers Greene study area georeferenced TIFFs and digitized data Rondout Neversink study area hydrogeologic framework layers Roundout Neversink study area georeferenced TIFFs and digitized data Supplementary Points for the Jamestown sourcewater study area in upstate New York Jamestown study area georeferenced TIFFs and digitized data Fishkill and Wappinger Falls study area georeferenced TIFFs and digitized data Jamestown study area hydrogeologic framework layers Well Logs for the Olean sourcewater study area in upstate New York Interpolation statistics for the Ellicottville sourcewater study area in upstate New York Interpolation statistics for the Fishkill and Wappinger Falls sourcewater study area in upstate New York Interpolation statistics for the Greene sourcewater study area in upstate New York MODFLOW-One-Water model used to support the Central Platte Natural Resources District Groundwater Management Plan Simulated Recharge Areas to Surface Waters and Public-Supply Wells with Travel Times Greater Than and Less Than 10 Years For Average 2005-2015 Conditions, Long Island, NY Cache groundwater-flow model MODFLOW 6 Model Scenario used to Simulate Transient Stresses, Heads, and Flows in the Regional Aquifer System of Long Island, New York, 2005-2019 Greene study area hydrogeologic framework layers Interpolation statistics for the Greene sourcewater study area in upstate New York Interpolation statistics for the Ellicottville sourcewater study area in upstate New York Cortland study area georeferenced TIFFs and digitized data Rondout Neversink study area hydrogeologic framework layers Well Logs for the Olean sourcewater study area in upstate New York Well Logs for the Cortland sourcewater study area in upstate New York Jamestown study area georeferenced TIFFs and digitized data Jamestown study area hydrogeologic framework layers Supplementary Points for the Jamestown sourcewater study area in upstate New York Cache groundwater-flow model Greene study area georeferenced TIFFs and digitized data Interpolation statistics for the Fishkill and Wappinger Falls sourcewater study area in upstate New York Roundout Neversink study area georeferenced TIFFs and digitized data Simulated Recharge Areas to Surface Waters and Public-Supply Wells with Travel Times Greater Than and Less Than 10 Years For Average 2005-2015 Conditions, Long Island, NY MODFLOW 6 Model Scenario used to Simulate Transient Stresses, Heads, and Flows in the Regional Aquifer System of Long Island, New York, 2005-2019 MODFLOW-One-Water model used to support the Central Platte Natural Resources District Groundwater Management Plan Fishkill and Wappinger Falls study area georeferenced TIFFs and digitized data