Skip to main content
Advanced Search

Filters: Tags: Groundwater-Flow Modeling (X)

76 results (10ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
thumbnail
The Mississippi Alluvial Plain (MAP) is one of the most important agricultural regions in the United States and underlies about 32,000 square miles of Missouri, Kentucky, Tennessee, Mississippi, Louisiana, and Arkansas. The MAP region supports a multibillion-dollar agricultural industry. The MAP is part of the Mississippi Embayment with several water-bearing units that make up the Mississippi Embayment Regional Aquifer System (MERAS). These water bearing units include the Mississippi River Valley Alluvial aquifer, Claiborne aquifers and Wilcox aquifers. Two areas in northeastern Arkansas, the Cache and Grand Prairie areas have been designated as critical groundwater areas because of decades of groundwater declines...
thumbnail
INTRODUCTION • Concerns over the viability of the fractured bedrock aquifer that provides about 1/3 of Rockland County’s water supply prompted a 5-year study by the U.S. Geological Survey (USGS) to (1) define the hydrogeologic framework of the aquifer, (2) assess conditions within it, and (3) identify other potential sources of water for the County. The study was done in cooperation with Rockland County and the New York State Department of Environmental Conservation. • Population growth in Rockland County to nearly 300,000 people has been paralleled by significant hydrologic changes over the past 50 years –water demand and impervious surface area have increased, and sanitary sewers now serve most areas and discharge...
thumbnail
This dataset has been archived; it has been superceded by version 2.0 (March 2021), which can be found at https://doi.org/10.5066/P954DLLC. The data contained in this data release support USGS Scientific Investigations Report 2020-5023, "Distribution of selected hydrogeologic characteristics of the upper glacial and Magothy aquifers, Long Island, New York" (Walter and Finkelstein, 2020). This data release contains estimates of aquifer texture describing the Long Island aquifer system. These estimates in total can be considered a model of aquifer texture describing unconsolidated sediments in the following principal units: 1) Upper glacial aquifer, 2) Jameco aquifer, 3) Monmouth Greensand confining unit, and 4)...
thumbnail
This dataset includes well logs used in the creation of the Ellicottville hydrogeologic framework. Well logs were used from multiple sources (DEC, DOT, NWIS, ESOGIS, and archived material) and were a crucial component in generating hydrogeologic layer elevations and thicknesses. Well logs are available in their original form on GeoLog Locator (https://webapps.usgs.gov/GeoLogLocator/#!/) and provided here in the digitized form (shapefiles and feature classes), which were used in the generation of the hydrogeologic framework.
thumbnail
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
Digital hydrogeologic datasets were developed for the Cortland study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters, lidar mean elevation raster, lacustrine extent polygon, valley-fill extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot discretization to match the model grid cell size.
The Fishkill/Wappinger study area is located in the vicinity of the towns of Beacon, Wappingers Falls, Poughkeepsie, and Fishkill. Previous USGS reports here include USGS Scientific Investigations Map 3136 (Reynolds and Calef, 2010) and Open-File Report 80-437 (Snavely, 1980). The five child pages below break the data up into georeferenced and digitized previous report data, interpreted geologic information, well logs, supplemental point data, and interpolation statistics.
thumbnail
Problem: Dissolved volatile-organic compounds (VOCs), including trichloroethylene (TCE), have been identified in a sole-source aquifer near the former Northrop Grumman Bethpage facility and Naval Weapons Industrial Reserve Plant (NWIRP) in Nassau County, N.Y. The Northrop Grumman Bethpage facility and NWIRP are listed as Class II inactive hazardous waste disposal sites (Site Nos. HW130003A and HW130003B respectively) on the New York State registry of Inactive Hazardous Waste Disposal Sites. Past investigations have documented that the groundwater contamination originated from these two sites and now extends nearly four miles to the south; in the direction of groundwater flow. During 2019, a groundwater-flow model...
This dataset includes georeferenced TIFF files from three separate reports for the Olean study area that have been digitized into feature classes within ArcGIS. Not all digitized and georeferenced data was necessarily used in the final interpolations, however they may have contributed to understanding the local hydrogeology.
The town of Cincinnatus is located in Cortland County, New York. No previous USGS publications are available for the Cincinnatus study area. Subsequently, all subsurface hydrogelogic data was derived from driller well logs. The four child pages below break the data up into interpreted geologic information, well logs, supplemental point data, and interpolation statistics.
thumbnail
Digital hydrogeologic datasets were developed for the Olean study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters (where present) for the main lacustrine unit, lacustrine silt and clay top and bottom elevation rasters (where present) for an upper lacustrine unit, LIDAR minimum elevation raster, lacustrine extent polygons, valley-fill extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot...
thumbnail
The data contained in this data release support USGS Scientific Investigations Report 2020-5023, "Distribution of selected hydrogeologic characteristics of the upper glacial and Magothy aquifers, Long Island, New York" (Walter and Finkelstein, 2020). This data release contains estimates of aquifer texture describing the Long Island aquifer system. These estimates in total can be considered a model of aquifer texture describing unconsolidated sediments in the following principal units: 1) Upper glacial aquifer, 2) Jameco aquifer, 3) Monmouth Greensand confining unit, and 4) Magothy aquifer. The Lloyd aquifer, a major aquifer on Long Island, is not included in the model due to a lack of available data. Aquifer texture...
thumbnail
Summary Fire Island National Seashore (FIIS) occupies 42 km of the barrier island for which it is named that lies off the southern shore of western and central Suffolk County, Long Island, N.Y. Fire Island is underlain by a complex aquifer system consisting of unconsolidated glacial, lacustrine, deltaic, and marine deposits of clay, silt, sand, and gravel that range in age from Late Cretaceous to Holocene. Accelerated sea level rise, storms, rising temperatures, and changes in patterns of precipitation are all expected to drive significant ecological change. Among the most vulnerable resources are the Island’s fresh groundwater resources. The potential for climate-driven changes in the quantity and quality of...
thumbnail
Problem The ground-water flow system underlying the Manhasset Neck Peninsula, which provides potable water to the local population, consists of a complex assemblage of Pleistocene- and Cretaceous-age sediments that form five aquifers and at least two confining units. Recent hydrogeologic mapping in Manhasset Neck indicates significant glacial erosion of the Magothy aquifer, Raritan Clay, and Lloyd aquifer, and several gaps in the confining units that overlie the North Shore and Lloyd aquifers. Five areas of salt-water intrusion have been delineated, two of which are considered active. Several public-supply wells on the Manhasset Neck Peninsula have been shut down in the past as a result of saltwater intrusion....
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Complete, Completed, Cooperative Water Program, GW Model, GW Model, All tags...
thumbnail
This dataset has been archived; it has been superseded by version 3.0 (November 2021) which can be found at https://doi.org/10.5066/P954DLLC . The data contained in this data release support USGS Scientific Investigations Report 2020-5023, "Distribution of selected hydrogeologic characteristics of the upper glacial and Magothy aquifers, Long Island, New York" (Walter and Finkelstein, 2020). This data release contains estimates of aquifer texture describing the Long Island aquifer system. These estimates in total can be considered a model of aquifer texture describing unconsolidated sediments in the following principal units: 1) Upper glacial aquifer, 2) Jameco aquifer, 3) Monmouth Greensand confining unit, and...
thumbnail
This dataset includes "smoothing points" used in the creation of the Cortland hydrogeologic framework. Smoothing points were manually added by the project team and were used to enhance interpolated layers using geologic assumptions and include: valley edge points, centerline bedrock points (and where applicable L1 and L2 points), and upland bedrock SURGO points.
The EWWSF study area is located in the vicinity of the towns of Ellenville, Wurtsboro, Woodbourne, and South Fallsburg, in Sullivan and Ulster Counties, New York. The EWWSF study area also extends into parts of Orange County, New York. Previous USGS reports here include USGS Scientific Investigations Map 2960 (Reynolds, 2007), Open-File Report 82-112 (Anderson and others, 1982), and Water Supply Paper 1985 (Frimpter, 1972). The five child pages below break the data up into georeferenced and digitized previous report data, interpreted geologic information, well logs, supplemental point data, and interpolation statistics.
thumbnail
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
thumbnail
Digital hydrogeologic datasets were developed for the Fishkill and Wappinger Falls study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters (where present), LIDAR minimum elevation raster, lacustrine extent polygon, valley extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot discretization to match what was done in previous work.


map background search result map search result map Assessment of Groundwater Resources to Adapt to Climate Change at Fire Island, New York Development of a Ground-Water Flow Model for the Manhasset Neck Peninsula, Nassau County, New York Rockland County Water-Resource Assessment Aquifer texture data describing the Long Island aquifer system Analysis of Factors Affecting Plume Remediation in a  Sole-Source Aquifer System, Nassau County, New York (Northrup Grumman Plume) Cortland study area hydrogeologic framework layers Aquifer texture data describing the Long Island aquifer system (ver. 2.0, March 2021) Supplementary Points for the Cortland sourcewater study area in upstate New York Olean study area georeferenced TIFFs and digitized data Fishkill and Wappinger Falls study area hydrogeologic framework layers Well Logs for the Ellicottville sourcewater study area in upstate New York Olean study area hydrogeologic framework layers Interpolation statistics for the Jamestown sourcewater study area in upstate New York Aquifer texture data describing the Long Island aquifer system (ver. 3.0, December 2021) Interpolation statistics for the Cortland sourcewater study area in upstate New York Interpolation statistics for the Rondout Neversink sourcewater study area in upstate New York Simulations of the groundwater-flow system in the Cache and Grand Prairie Critical Groundwater Areas, northeastern Arkansas Development of a Ground-Water Flow Model for the Manhasset Neck Peninsula, Nassau County, New York Well Logs for the Ellicottville sourcewater study area in upstate New York Interpolation statistics for the Cortland sourcewater study area in upstate New York Cortland study area hydrogeologic framework layers Assessment of Groundwater Resources to Adapt to Climate Change at Fire Island, New York Rockland County Water-Resource Assessment Interpolation statistics for the Rondout Neversink sourcewater study area in upstate New York Supplementary Points for the Cortland sourcewater study area in upstate New York Olean study area georeferenced TIFFs and digitized data Olean study area hydrogeologic framework layers Interpolation statistics for the Jamestown sourcewater study area in upstate New York Aquifer texture data describing the Long Island aquifer system Aquifer texture data describing the Long Island aquifer system (ver. 2.0, March 2021) Aquifer texture data describing the Long Island aquifer system (ver. 3.0, December 2021) Simulations of the groundwater-flow system in the Cache and Grand Prairie Critical Groundwater Areas, northeastern Arkansas Fishkill and Wappinger Falls study area hydrogeologic framework layers