Skip to main content
Advanced Search

Filters: Tags: High Plains aquifer (X)

102 results (12ms)   

View Results as: JSON ATOM CSV
thumbnail
The High Plains aquifer extends from approximately 32 to 44 degrees north latitude and 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital dataset consists of a raster of water-level changes for the High Plains aquifer, predevelopment (about 1950) to 2019. It was created using water-level measurements from 2,741 wells measured in both the predevelopment period (about 1950) and in 2019, the latest available static water level measured in 2015 to 2018 from 71 wells in New Mexico and using other published information on water-level change in areas with few water-level...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This digital spatial data set consists of the aquifer base elevation contours (50-foot contour interval) for part of the High Plains aquifer in the central United States. This subset of the High Plains aquifer covers the Republican River Basin in Nebraska, Kansas, and Colorado upstream from the streamflow station on the Republican River near Hardy, Nebraska, near the Kansas/Nebraska border. In Nebraska, the digitized contours extend...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This raster data set represents specific-yield ranges in the High Plains aquifer of the United States. The High Plains aquifer underlies 112.6 million acres (176,000 square miles) in parts of eight States: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Specific yield ranges from near zero to 30 percent (Gutentag and others, 1984). This data set was generated in ESRI ArcInfo Workstation Version...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This dataset consists of a raster of water-level changes for the High Plains aquifer, predevelopment (about 1950) to 2011. This digital...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set consists of digital water-level-change contours for the High Plains aquifer in the central United States, predevelopment (about 1950) to 2007. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota,...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Estimates of area and aerial extent of land-use categories are an essential component for computing the water budget of the High Plains aquifer. These raster land-use land class data represent yearly simulated future land use for the High Plains from 2009 to 2050 These data were developed using the FOREcasting SCEnarios (FORE-SCE) of future land cover model (Sohl and others, 2007; Sohl and Sayler 2008) for two (A2 and B2) of the...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Estimates of land use categories are an essential component for computing the water budget of the High Plains aquifer. These raster land-use data represent yearly estimated land use for the High Plains from 1949 to 2008. These data were developed using the FOREcasting SCEnarios of future land cover (FORE-SCE) model (Sohl and others, 2007) and then processed using a Geographic Information System (GIS). The GIS software used to process...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set consists of digital polygons of constant recharge rates for the High Plains aquifer in Oklahoma. This area encompasses the panhandle counties of Cimarron, Texas, and Beaver, and the western counties of Harper, Ellis, Woodward, Dewey, and Roger Mills. The High Plains aquifer underlies approximately 7,000 square miles of Oklahoma and is used extensively for irrigation. The High Plains aquifer is a water-table aquifer...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This raster data set represents water-level change in the High Plains aquifer of the United States from 2005 to 2009, in feet. The High Plains aquifer underlies 112.6 million acres (176,000 square miles) in parts of eight States: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The aquifer's saturated thickness ranges from near zero to about 1,200 feet (Weeks and Gutentag, 1981). Water-level declines...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The water-budget-components geodatabase contains selected data from maps in the, "Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 through 1949 and 2000 through 2009" report (Stanton and others, 2011). Data were collected and synthesized from existing climate models including the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Daly and others, 1994), and the Snow accumulation and...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This raster data set represents the saturated thickness of the High Plains aquifer of the United States, 2009, in feet. The High Plains aquifer underlies approximately 112.6 million acres (176,000 square miles) in parts of eight States: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The aquifer's saturated thickness ranges from near zero to about 1,200 feet (Weeks and Gutentag, 1981). Water-level...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The water-budget-components geodatabase contains selected data from maps in the, "Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 through 1949 and 2000 through 2009" report (Stanton and others, 2011). Data were collected and synthesized from existing climate models including the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Daly and others, 1994), and the Snow accumulation and...
thumbnail
Estimation of irrigation water use provides essential information for the management and conservation of agricultural water resources. The blue water evapotranspiration (BWET) raster dataset at 30-meter resolution is created to estimate agricultural irrigation water consumption. The dataset contains seasonal total (1 May to 30 September) BWET time series (1986 – 2020) for the croplands across the U.S. High Plains aquifer region. The BWET estimates are generated by integrating an energy-balance ET model (Operational Simplified Surface Energy Balance model) and a water-balance ET model (Vegetation ET model). BWET in croplands reflects crop consumptive use of irrigation water extracted from surface water and groundwater...
thumbnail
The High Plains aquifer extends from south of about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This dataset consists of a raster of water-level changes for the High Plains aquifer, 2013 to 2015. This digital dataset was created using water-level measurements from 7,529 wells measured in both 2013 and 2015. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000.
thumbnail
This release contains geospatial data digitized from the Map Showing Geology, Structure, and Oil and Gas Fields in the Sterling 1x2 Degree Quadrangle, Colorado, Nebraska, and Kansas (Scott, 1978) and was compiled as part of the National Geologic Synthesis project. The geospatial data depicts the geology of this quadrangle, which is dominated by Quaternary alluvial and aeolian deposits overlying Tertiary and Cretaceous sedimentary rock, including the Ogallala formation, the Fox Hills sandstone, and the Pierre shale. The included database includes spatial data depicting the locations of mapped geologic contacts and faults, polygons denoting the mapped surficial extent of geologic formations, and structural contours...
thumbnail
The High Plains aquifer extends from about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set is comprised of water-level measurements from 7,698 wells measured in both 2015 and 2017, which were used to map water-level changes, 2015 to 2017. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The water-budget-components geodatabase contains selected data from maps in the, "Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 through 1949 and 2000 through 2009" report (Stanton and others, 2011). Data were collected and synthesized from existing climate models including the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Daly and others, 1994), and the Snow accumulation and...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This digital data set consists of contours for 1980 water-level elevations for the High Plains aquifer in the central United States. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 106 degrees west longitude. The outcrop area covers 174,000 square miles and is present in Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming....
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set consists of digital water-level-change contours for the High Plains aquifer in the Central United States, 1980 to 1996. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming....
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This digital data set consists of faults for the High Plains aquifer in the central United States. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 106 degrees west longitude. The outcrop area covers 174,000 square miles and is present in Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created...


map background search result map search result map (B1) Spatial data set of mapped water-level changes in the High Plains aquifer, 2013 to 2015 F05_hpwlcp1517pt Water-level change data used to map water-level changes in the High Plains aquifer, 2015 to 2017 Digital database of the previously published map showing geology, structure, and oil and gas fields in the Sterling 1 degree x 2 degrees quadrangle, Colorado, Nebraska, and Kansas DS-777 Average Annual Precipitation Data, 2000 to 2009, in inches estimated from an Inverse-Distance-Weighted (IDW) interpolation, for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Average Annual Potential Evapotranspiration, 2000 to 2009, in inches estimated from the National Weather Service (NWS) Snow Accumulation and Ablation (SNOW-17) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Average Annual Irrigation Withdrawals, 2000 to 2009, in inches estimated from the Soil Water Balance (SWB) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Digital map of the elevation of the base of the High Plains Aquifer in the Republican River Basin upstream of Hardy, Nebraska, in parts of Nebraska, Kansas, and Colorado Digital data set of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1980 to 1996 Digital map of geologic faults for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Digital map of water levels in 1980 for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2007 Saturated thickness, High Plains aquifer, 2009 Specific yield, High Plains aquifer Water-level change, High Plains aquifer, 2005 to 2009 Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2011 DS-777 Annual Model-Backcasted Land-Use/Land-Cover Rasters from 1949 to 2008 for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Annual Model-Forecasted Land-Use/Land-Cover Rasters from 2009 to 2050 for the A2 Climate Scenario for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma F01_hpwicpd19t_Raster dataset of mapped water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2019 Seasonal Blue Water Evapotranspiration 1986 – 2020 for the Croplands in the High Plains Aquifer Region Digital database of the previously published map showing geology, structure, and oil and gas fields in the Sterling 1 degree x 2 degrees quadrangle, Colorado, Nebraska, and Kansas Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma Digital map of the elevation of the base of the High Plains Aquifer in the Republican River Basin upstream of Hardy, Nebraska, in parts of Nebraska, Kansas, and Colorado Digital map of geologic faults for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming F05_hpwlcp1517pt Water-level change data used to map water-level changes in the High Plains aquifer, 2015 to 2017 Digital map of water levels in 1980 for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Seasonal Blue Water Evapotranspiration 1986 – 2020 for the Croplands in the High Plains Aquifer Region Digital data set of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1980 to 1996 Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2007 DS-777 Annual Model-Forecasted Land-Use/Land-Cover Rasters from 2009 to 2050 for the A2 Climate Scenario for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Saturated thickness, High Plains aquifer, 2009 Specific yield, High Plains aquifer Water-level change, High Plains aquifer, 2005 to 2009 Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2011 F01_hpwicpd19t_Raster dataset of mapped water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2019 (B1) Spatial data set of mapped water-level changes in the High Plains aquifer, 2013 to 2015 DS-777 Average Annual Precipitation Data, 2000 to 2009, in inches estimated from an Inverse-Distance-Weighted (IDW) interpolation, for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Average Annual Irrigation Withdrawals, 2000 to 2009, in inches estimated from the Soil Water Balance (SWB) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Average Annual Potential Evapotranspiration, 2000 to 2009, in inches estimated from the National Weather Service (NWS) Snow Accumulation and Ablation (SNOW-17) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Annual Model-Backcasted Land-Use/Land-Cover Rasters from 1949 to 2008 for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming