Skip to main content
Advanced Search

Filters: Tags: Hudson River (X) > Types: Shapefile (X)

11 results (207ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of Hudson Valley and New York City, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of Hudson Valley and New York City, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability...
thumbnail
This data set contains rate of shoreline change statistics for New York State coastal wetlands. Analysis was performed in ArcMap 10.5.1 using historical vector shoreline data from the National Oceanic and Atmospheric Administration (NOAA). Rate of change statistics were calculated using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0. End-point rates, presented here, calculated by dividing the distance of shoreline movement by the time elapsed between the oldest and the most recent shoreline, were generated for wetlands where fewer than three historic shorelines were available. Linear regression rates, determined by fitting a least-squares regression line to all shoreline...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of Hudson Valley and New York City, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of Hudson Valley and New York City, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, mean tidal range, and shoreline change rate are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate...
thumbnail
This data set displays intersection points used to compute rate of change statistics for New York State coastal wetlands. Analysis was performed in ArcMap 10.5.1 using historical vector shoreline data from the National Oceanic and Atmospheric Administration (NOAA). Rate of change statistics were calculated using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0. End-point rates, calculated by dividing the distance of shoreline movement by the time elapsed between the oldest and the most recent shoreline, were generated for wetlands where fewer than three historic shorelines were available. Linear regression rates, determined by fitting a least-squares regression line to...
thumbnail
This dataset includes New York State historical shoreline positions represented as digital vector polylines from 1880 to 2015. Shorelines were compiled from topographic survey sheets from the National Oceanic and Atmospheric Administration (NOAA). Historical shoreline positions can be used to assess the movement of shorelines through time. Rates of shoreline change were calculated in ArcMap 10.5.1 using the Digital Shoreline Analysis System (DSAS) version 5.0. DSAS uses a measurement baseline method to calculate rate of change statistics. Transects are cast from the reference baseline to intersect each shoreline, establishing measurement points used to calculate shoreline change rates. For wetland shorelines these...
thumbnail
This data set displays baselines used to calculate shoreline rate of change statistics for New York State coastal wetlands. Analysis was performed in ArcMap 10.5.1 using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0, and polyline vector historical shorelines from the National Oceanic and Atmospheric Administration (NOAA) . The baselines used in the analysis serve as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing intersection measurement points, which were then used to calculate the rates. U.S. Fish and Wildlife National Wetland Inventory polygon vector data provided extents of coastal...
thumbnail
The New York State Department of Environmental Conservation (NYSDEC) is developing a unit management plan/environmental impact statement (UMP/EIS) for the Hudson Gorge Primitive Area, an area of Forest Preserve land encompassing a scenic stretch of the Hudson River in the Adirondack Park. Two goals of the UMP/EIS are to inventory natural resources and ecosystems and take actions to protect those resources while providing for appropriate types and levels of public recreational use. Because of the river's extensive whitewater reaches, it is the setting for a commercial rafting industry that operates during spring, summer, and fall. To increase flows in the Indian and Hudson Rivers, the Town of Indian Lake conducts...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of Hudson Valley and New York City, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability...
thumbnail
This data set contains rate of shoreline change statistics for New York State coastal wetlands. Analysis was performed in ArcMap 10.5.1 using historical vector shoreline data from the National Oceanic and Atmospheric Administration (NOAA). Rate of change statistics were calculated using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0. End-point rates, calculated by dividing the distance of shoreline movement by the time elapsed between the oldest and the most recent shoreline, were generated for wetlands where fewer than three historic shorelines were available. Linear regression rates, presented here, were determined by fitting a least-squares regression line to...


    map background search result map search result map Effects of recreational flow releases on natural resources of the Indian and Hudson Rivers End point rate of shoreline change statistics for New York State coastal wetlands Linear regression rate of shoreline change statistics for New York State coastal wetlands Baselines used to calculate rate of shoreline change statistics for New York State coastal wetlands Intersection points used to calculate rate of shoreline change statistics for New York State coastal wetlands Historical shorelines used to calculate rate of shoreline change statistics for New York State coastal wetlands Conceptual marsh units of Hudson Valley and New York City salt marsh complex, New York Unvegetated to vegetated ratio of marsh units in Hudson Valley and New York City salt marsh complex, New York Elevation of marsh units in Hudson Valley and New York City salt marsh complex, New York Exposure potential of marsh units to environmental health stressors in Hudson Valley and New York City salt marsh complex, New York Rate of shoreline change of marsh units in Hudson Valley and New York City salt marsh complex, New York Effects of recreational flow releases on natural resources of the Indian and Hudson Rivers Conceptual marsh units of Hudson Valley and New York City salt marsh complex, New York Unvegetated to vegetated ratio of marsh units in Hudson Valley and New York City salt marsh complex, New York Elevation of marsh units in Hudson Valley and New York City salt marsh complex, New York Exposure potential of marsh units to environmental health stressors in Hudson Valley and New York City salt marsh complex, New York Rate of shoreline change of marsh units in Hudson Valley and New York City salt marsh complex, New York Linear regression rate of shoreline change statistics for New York State coastal wetlands End point rate of shoreline change statistics for New York State coastal wetlands Intersection points used to calculate rate of shoreline change statistics for New York State coastal wetlands Baselines used to calculate rate of shoreline change statistics for New York State coastal wetlands Historical shorelines used to calculate rate of shoreline change statistics for New York State coastal wetlands