Skip to main content
Advanced Search

Filters: Tags: Hurricane Sandy (X) > partyWithName: LCC Network Data Steward (X)

12 results (22ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset represents a species distribution model for least tern (Sternula antillarum) on New Jersey’s Atlantic coast and was created as part of the Protection of Critical Beach Habitat project. In addition to least tern, this project includes species distribution models for piping plover (Charadrius melodus), least tern (Sternula antillarum), and American oystercatcher (Haematopus palliatus). All species models can be found in the Data Basin gallery Protection of Critical Beach-nesting Bird Habitats in the Wake of Severe Coastal Storms.Species distribution modeling was conducted to examine the influence of landscape scale variables and beach management strategies on bird breeding habitat suitability. The probability...
Recommended citation:Rice, T.M. 2017. Inventory of Habitat Modifications to Sandy Oceanfront Beaches in the U.S. Atlantic Coast Breeding Range of the Piping Plover (Charadrius melodus) as of 2015: Maine to North Carolina. Report submitted to the U.S. Fish and Wildlife Service, Hadley, Massachusetts. 295 p.This report describes a project that inventoried modifications to both tidal inlet and sandy, oceanfront beach habitats along the Atlantic coast from Maine through North Carolina. Three distinct time periods were assessed: before Hurricane Sandy (early 2012), immediately after Hurricane Sandy (November 2012), and three years after Hurricane Sandy (2015) to document modifications to sandy beaches and tidal inlet...
This project is a collaborative effort to assess risks and set response priorities for tidal-marsh dependent bird species from Virginia to maritime Canada.With more than 1,500 sampling sites for estimating bird abundance and plant community composition, 22 sampling sites for estimating species fecundity and survival, and 651 sampling points for measuring salt marsh elevation, the Salt marsh Habitat and Avian Research Program is an unprecedented undertaking to characterize threats to tidal-marsh dependent bird species along the entire mid-Atlantic coastline.Originally initiated in 2011 by a team of scientists looking to align efforts towards understanding threats to salt marsh birds across the region SHARP had enough...
This project inventoried modifications to both tidal inlet and sandy, oceanfront beach habitats along the Atlantic coast from Maine through North Carolina. Three distinct time periods were assessed: before Hurricane Sandy (early 2012), immediately after Hurricane Sandy (November 2012), and three years after Hurricane Sandy (2015) to document modifications to sandy beaches and tidal inlet habitat in response to the stormy. The inventories and series of reports were generated using Google Earth imagery.
This project is being closely coordinated with a companion project funded by the North Atlantic LCC.In 2011, intense and sustained rain from Hurricane Irene and Tropical Storm Lee washed out roads throughout mountains of New York and New England as culverts running under those roads were not designed to handle such enormous volumes of water. Additional flooding from Hurricane Sandy, which lashed the Northeast coast and adjacent inland areas in October 2012, caused additional damage. The widespread effects of these massive storms underscore the need for a regional science-based approach to prioritize and increase the resiliency of roads to floods.Improving the resiliency of roads has multiple benefits beyond protecting...
Rutgers University and Conserve Wildlife Foundation of New Jersey have partnered on a project entitled Protection of Critical Beach-nesting Bird Habitats in the Wake of Severe Coastal Storms under the North Atlantic LCC coordinated Hurricane Sandy Disaster Mitigation Funds beach resiliency projects. The project uses species’ distribution modeling to examine the landscape-scale habitat variables that influence beach-nesting bird habitat selection. The original project had the following primary goals: 1) catalogue suitable breeding habitat criteria for NJ’s beach-nesting birds; 2) quantify changes in beach-nesting bird habitat resulting from Superstorm Sandy; 3) evaluate the impact of anthropogenic storm recovery...
thumbnail
This dataset represents a species distribution model for piping plover (Charadrius melodus) on New Jersey’s Atlantic coast and was created as part of the Protection of Critical Beach Habitat project. In addition to piping plover, this project includes species distribution models for piping plover (Charadrius melodus), least tern (Sternula antillarum), and American oystercatcher (Haematopus palliatus). All species models can be found in the Data Basin gallery Protection of Critical Beach-nesting Bird Habitats in the Wake of Severe Coastal Storms.Species distribution modeling was conducted to examine the influence of landscape scale variables and beach management strategies on bird breeding habitat suitability. The...
Three types of data (one with an elevation model (DEM), one without a DEM, and one indicating the difference) are provided for the entire Northeast region and by analysis zone (n=8). Tidal Marsh Vegetation Classification, DEM, 3m, Northeast U.S. – contains a regional classification produced using a combination of Digital Elevation Model (DEM) and National Agriculture Imagery Program (NAIP) multispectral imagery. All eight cover types are included in this classification. This dataset combined with “Tidal Marsh Vegetation Classification, DEM, 3m, Northeast U.S” provides a contiguous classification of tidal marsh cover types from coastal Maine to Virginia. The eight cover types include: High marsh: Area flooded during...
thumbnail
This dataset represents a species distribution model for American oystercatcher (Haematopus palliatus) on New Jersey’s Atlantic coast and was created as part of the Protection of Critical Beach Habitat project. In addition to American oystercatcher, this project includes species distribution models for piping plover (Charadrius melodus), least tern (Sternula antillarum), and black skimmer (Rynchops niger). All species models can be found in the Data Basin gallery Protection of Critical Beach-nesting Bird Habitats in the Wake of Severe Coastal Storms.Species distribution modeling was conducted to examine the influence of landscape scale variables and beach management strategies on bird breeding habitat suitability....
thumbnail
This dataset represents a species distribution model for black skimmer (Rynchops niger) on New Jersey’s Atlantic coast and was created as part of the Protection of Critical Beach Habitat project. In addition to black skimmer, this project includes species distribution models for piping plover (Charadrius melodus), least tern (Sternula antillarum), and American oystercatcher (Haematopus palliatus). All species models can be found in the Data Basin gallery Protection of Critical Beach-nesting Bird Habitats in the Wake of Severe Coastal Storms.Species distribution modeling was conducted to examine the influence of landscape scale variables and beach management strategies on bird breeding habitat suitability. The probability...
This multi-faceted project aims to assess nesting habitat for the Federally-listed piping plover (Charadrius melodus) and other beach-dwelling species on Atlantic coastal beaches and to forecast future habitat under accelerating sea level rise. This project engages a broad community of stakeholders along 1500 km of the U.S. Atlantic breeding range from North Carolina to Maine to address a shared problem in species and landscape management and increases collaboration and collective ‘ownership’ of the problem. The project can be divided into three parts: 1) Application development. Using agile software development approaches, a smartphone application called iPlover was conceived, developed and deployed in just a few...
This cooperative agreement, part of the suite of North Atlantic LCC Hurricane Sandy Marsh resilience projects, will increase understanding of how marshes across a range of conditions in the Northeast are likely to respond to sea level rise and storms. We will parameterize coupled marsh and hydrodynamic models for estuaries in the Northeast affected by Hurricane Sandy. The model will be applied to Plum Island Sound, MA in 2015. In the second year of the project, the Hydro-MEM model will be applied to the Edwin B. Forsythe National Wildlife Refuge, in coastal NJ, the John H. Chafee National Wildlife Refuge, in Rhode Island and the back barrier marsh complexes from the inlet of Chesapeake Bay to Ocean City MD, including...


    map background search result map search result map Species distribution model for American oystercatcher on New Jersey's Atlantic Coast, 2007-2012 Species distribution model for black skimmer on New Jersey’s Atlantic Coast, 2007-2012 Species distribution model for least tern on New Jersey’s Atlantic Coast, 2007-2012 Species distribution model for piping plover on New Jersey’s Atlantic Coast, 2007-2012 Species distribution model for American oystercatcher on New Jersey's Atlantic Coast, 2007-2012 Species distribution model for black skimmer on New Jersey’s Atlantic Coast, 2007-2012 Species distribution model for least tern on New Jersey’s Atlantic Coast, 2007-2012 Species distribution model for piping plover on New Jersey’s Atlantic Coast, 2007-2012