Skip to main content
Advanced Search

Filters: Tags: Hydrogeologic Characterization (X)

80 results (74ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Problem The Tully Valley, located in southern Onondaga County has been the source of sediment and brackish water discharge to Onondaga Creek, a tributary to the Seneca and Oswego Rivers and eventually Lake Ontario. Information on the origin of the Tully Valley mudboils, their persistence, and the possible extent of their migration within the Tully Valley is needed to mitigate or remediate (1)the discharge of turbid water and fine-grained sediment from the mudboils, (2) land-surface subsidence caused by the removal of sediment from below the land surface, and (3) degradation of Onondaga Creek by turbidity, fine-sediment deposition, and chloride loading. Objectives To define the glacial stratigraphy and hydraulic-head...
thumbnail
Introduction Detailed mapping of the glacial aquifer within the buried Fairport-Lyons bedrock channel in southern Wayne County, N.Y. is the latest study in the cooperative Detailed Aquifer Mapping Program between the U.S. Geological Survey (USGS) and the New York State Department of Environmental Conservation (NYSDEC). The aim of the program is to map the extent of glacial aquifers in New York State at a scale of 1:24,000. This information is used by NYSDEC Division of Water and others for delineation of groundwater contributing areas, assessing potential threats to aquifers from both point and non-point sources of pollution, responding to contamination from spills or leaks from underground storage facilities,...
thumbnail
Background In recent years, more and more people have become concerned about Long Island's supply of freshwater. Currently, there is no comprehensive, island-wide resource that summarizes recent U.S. Geological Survey (USGS) research related to the Island's aquifer system. A webpage will be developed by the USGS that will compile published data from the hydrologic-surveillance program, in place since the mid-1970’s, and various USGS sources, and supplement this information with more recent seasonal and annual hydrologic technical assistance will be provided to the Suffolk County Water Authority (SCWA) to help them produce an easy to understand annual report that will provide a snapshot of the state of Long Island's...
thumbnail
Summary The U. S. Geological Survey (USGS) will conduct simulations using existing aquifer data, including geologic logs from vertical profile borings (VPBs) and well installations, water levels, and pump test data available from the water districts for these production wells. Subsequently USGS will incorporate data from a groundwater pump test and additional data from new VPBs and monitoring wells. Using particle tracking maps, USGS will illustrate the spatial configuration of the capture zone and percentage of capture of the shallow and deep plumes in each production well. The model area will be limited to achieve these objectives and make maximum use of available sampling locations in the region. USGS will...
thumbnail
Introduction Detailed mapping of the valley-fill aquifer within the Susquehanna River valley and adjacent tributary valleys in south-central Broome County (Towns of Conklin and Kirkwood) is the latest study in the cooperative Detailed Aquifer Mapping Program between the US Geological Survey (USGS) and the New York State Department of Environmental Conservation (NYSDEC). The aim of the program is to map sand and gravel aquifers in New York State at a scale of 1:24,000. This information is used by NYSDEC Division of Water and others to delineate groundwater contributing areas, assess potential threats to aquifers from both point and non-point sources, respond to contamination from spills or leaks from underground...
thumbnail
Problem The Village of Dryden, rural homeowners, farms, and businesses in the Virgil Creek Valley tap several confined sand and gravel aquifers in the Virgil Creek valley in the town of Dryden . The valley contains a large moraine with complex stratigraphy consisting of continuous and discontinuous layers of till, lake deposits, and glaciofluvial sand and gravel. Sand and gravel units form the aquifers in the valley-fill deposits. There are at least three extensive confined aquifer units at various depths. However, little is known about (1) the location of recharge and discharge areas, (2) direction of groundwater flow, (3) extent of hydraulic connection between aquifer units, and (4) extent of surface- and ground-water...
thumbnail
A digital representation of closed depression features overlying and adjacent to New York’s carbonate-bedrock aquifers. Includes closed depressions that are both natural and anthropogenic in origin. The features were derived from a digital contour database obtained from https://topotools.cr.usgs.gov/contour_data.php. The original contour dataset was generated from the National Elevation Dataset (NED) and the National Hydrography Dataset (NHD) in a fully automated process. The process is described in U.S. Geological Survey Scientific Investigations Report 2012–5167.
thumbnail
This folder contains water-level recovery data for selected hydraulic tests that support USGS Scientific Investigations Report 2020-5087, "Transmissivity Estimated from Brief Pumping Tests of Domestic Wells and Compared with Bedrock Lithofacies and Position on Hillsides in the Appalachian Plateau of New York." These data are part of a data release that contains observed water-level recovery data in 52 wells, matched to theoretical type curves defined by postulated values of aquifer transmissivity and storage, that together constitute the database for USGS Scientific Investigations Report 2020-5087. The water-level recovery data were collected after 13 to 132 seconds of pumping. Five of the wells were also test-pumped...
thumbnail
Problem - The major hydrogeologic units of Long Island, New York, have been delineated as part of the islandwide mapping effort of Smolensky, Buxton, and Shernoff that was published in 1989 as U.S. Geological Survey (USGS) Hydrologic Atlas (HA) 709. Concern about local details in the hydrogeologic framework that may not be represented in HA-709 has led the USGS, in cooperation with the U.S. Environmental Protection Agency (EPA), to assess the hydrogeology of the Long Island area so ground-water-flow modeling planned by EPA can more fully reflect local hydrogeologic conditions. Objectives - The primary objective of this project is to construct geographic information system (GIS) datasets of the altitudes of the...
thumbnail
Background: A sequence of gently dipping carbonate bedrock - the Bertie Formation, Akron Dolostone, and Onondaga Limestone crop out along a 2- to5-mile wide band in western and central New York. These bedrock units trend east-west for 250 miles across the State and form extensive carbonate-bedrock aquifers which transmit and yield water from solution-enlarged fractures, bedding planes, and other openings (Olcott, 1995). Bedding planes or sub-horizontal fractures typically are the most enlarged and important water conduits. Karstic features such as sinkholes, swallets, solution channels, and caverns can locally transmit large amounts of surface water into the ground where the groundwater can move quickly and over...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Aquifer Mapping, Aquifer Mapping, Aquifer Mapping, Basin & Hydrogeologic Characterization, Basin & Hydrogeologic Characterization, All tags...
thumbnail
Problem The discharge of freshwater and associated loading of nutrients and other dissolved constituents from the Long Island aquifer system to surrounding estuaries and their tributaries are increasingly recognized as critical factors in the health of these ecosystems. However, further work is needed to scientifically characterize these factors and present them to the public in an appropriate manner. Many organizations have undertaken assessments of this discharge and loading for discrete groundwater source areas and (or) receiving surface waters, applying a variety of techniques and assumptions. In part, this is because there is no delineation of recharge areas to the island’s groundwater-fed streams and estuaries...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Basin & Hydrogeologic Characterization, Basin & Hydrogeologic Characterization, Climate Change, Climate Research and Development, ClimateChange, All tags...
thumbnail
Background The North Atlantic Coastal Plain (NACP) covers a land area of approximately 34,000 mi 2 along the eastern seaboard of the United States from Long Island, N.Y., southward to the northern portion of North Carolina. This area is underlain by a thick wedge of sedimentary deposits that form a complex groundwater system in which the sands and gravels function as confined aquifers, and the silts and clays function as confining units. These confined aquifers of the NACP constitute a major source of water for public and domestic supply for the nearly 27 million people living in the region, as well as being important source of water for industrial and agricultural purposes. Increases in population and changes...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Cooperative Water Program, Delaware, Focused Assessments, Focused Assessments, Focused Assessments, All tags...
thumbnail
Background and Problem Tully Valley is part of the Onondaga Trough, which extends from the Valley Heads Moraine in the south to Onondaga Lake in the north near Syracuse, New York (fig. 1). The Onondaga Trough is filled with a complex sequence of glacial and post-glacial sediments that overlie Devonian carbonate rock and shale and Silurian shale and salt (fig.2). Mudboils, volcano-like cones of fine sand and silt, have been documented in the Tully Valley since the late 1890s, and have been continuously discharging turbid water into Onondaga Creek since the 1950s (Kappel and others, 1996). Continuous mudboil activity appears to be correlated with salt solution-mining activities in brine fields at the southern...
thumbnail
INTRODUCTION Naturally occurring methane has been noted at some locations in the upper Devonian shale bedrock and in overlying glacial deposits in parts of Broome, Tioga, and Chemung Counties in south-central New York State (Williams, 2010). Systematic sampling of water wells for dissolved methane is needed to determine if the topographic and hydrogeologic setting of a well is related to methane occurrence. Objective and Study Area - The objective of this study is to characterize the natural occurrence of dissolved methane gas in groundwater from water wells within four different topographic and hydrogeologic settings (upland and major valley areas where bedrock is confined or unconfined by glacial deposits)....
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Broome County, Chemung County, Completed, Contaminants, Natural, Contaminants, Natural, All tags...
thumbnail
Hydrogeologic characterization of the basal sand and gravel aquifer in the Hoosic River valley in Hoosick Falls, New York is important for determination of sources, extent, and future migration of PFOA groundwater contamination; evaluation of potential remedial actions; and appraisal of alternative groundwater supplies. Variations in the current pumping stresses and a planned 72-hour aquifer test provide an opportunity to characterize hydraulic connections in the basal sand and gravel aquifer through continuous monitoring of groundwater levels in selected wells. Publications Williams, J.H., and Heisig, P.M., 2018, Groundwater-level analysis of selected wells in the Hoosic River Valley near Hoosick Falls, New...
thumbnail
Background - Detailed mapping of the glacial aquifer within the Chemung River and adjacent tributary valleys in Eastern Chemung County is the latest study in the cooperative Detailed Aquifer Mapping Program between the US Geological Survey (USGS) and the New York State Department of Environmental Conservation (NYSDEC). The aim of the program is to map glacial aquifers in New York State at a scale of 1:24,000. This information is used by NYSDEC Division of Water and others for delineation of groundwater contributing areas, assessing potential threats to aquifers from both point and non-point sources, responding to contamination from spills or leaks from underground storage facilities, and providing information...
thumbnail
Introduction Detailed mapping of stratified glacial deposits in eastern Broome and southeastern Chenango Counties, New York is a study in the cooperative Detailed Aquifer Mapping Program between the US Geological Survey (USGS) and the New York State Department of Environmental Conservation (NYSDEC). The aim of the program is to map glacial aquifers in New York State at a scale of 1:24,000. This information is used by NYSDEC Division of Water and others for delineation of groundwater contributing areas, assessing potential threats to aquifers from both point and non-point sources, responding to contamination from spills or leaks from underground storage facilities, and providing information to assess the need...
thumbnail
Morris Lake, also known as Newton Reservoir, has been the source of drinking water for the Town of Newton, New Jersey, since the early 1900s. Although Morris Lake has been used as a source of drinking water for many years, its capacity was previously unknown. In April 2018, the U.S. Geological Survey and the New Jersey Department of Environmental Protection conducted a bathymetric survey of Morris Lake using a multibeam echosounder to map the reservoir. The points measured with the multibeam echosounder were combined with lidar data above the water surface and processed to create a 3.3-foot (1 meter) raster grid of the bathymetric surface, bathymetric contours at 2-foot intervals of depth and elevation, and an elevation-area-capacity...
thumbnail
From April 2013 to August 2015, the U.S. Geological Survey, in cooperation with the Town of Enfield and the Tompkins County Planning Department, collected horizontal-to-vertical seismic soundings at 69 locations in the Enfield Creek valley to help determine thickness of the unconsolidated deposits and depth to bedrock. The HVSR technique, commonly referred to as the passive-seismic method, is used to estimate the thickness of unconsolidated sediments and the depth to bedrock (Lane and others, 2008). The passive-seismic method uses a single, broad-band three-component (two horizontal and one vertical) seismometer to record ambient seismic noise. In areas that have a strong acoustic contrast between the bedrock and...


map background search result map search result map Nassau Hydrogeologic Maps Hydrogeology of the Tully Valley Mudboil Area, Southern Onondaga County, New York Detailed Aquifer Mapping in Wayne County, New York, The Fairport-Lyons Channel Aquifer State of the Aquifer, Long Island, New York Detailed Aquifer Mapping in Eastern Broome and Southeastern Chenango Counties, New York Natural Methane Occurrence in Water Wells of South-Central New York State- Evaluation of Topographic Position and Hydrogeologic Setting Detailed Aquifer Mapping in Eastern Chemung County – The Chemung River Valley and Adjacent Tributary Valleys Simulation of Zones of Groundwater Contribution to Three Well Fields Southwest Portion of the Naval Weapons Industrial Reserve Plant, Bethpage, New York Detailed Aquifer Mapping in the Susquehanna River Valley  in South-Central Broome County –Towns of Conklin and Kirkwood Hydrogeology of the Virgil Creek Valley in the Town of Dryden, Tompkins County, New York Hydrogeologic Recharge Settings of the Carbonate-Bedrock Aquifers in Livingston and Monroe Counties, Western New York Comprehensive Delineation of Groundwater Source Areas and Times-of-travel to Long Island Streams and Estuaries Groundwater Availability of the Northern Atlantic Coastal Plain Groundwater-level Monitoring for Characterization of Hydraulic Connections in the Basal Sand & Gravel Aquifer, Hoosic River Valley, Hoosick Falls, New York Digital Contour Database of Closed Depressions Determination of Sources of Water to the Tully Valley Mudboils Geospatial Bathymetry Dataset and elevation-area-capacity tables for Morris Lake (Newton Reservoir), New Jersey, 2018 Elevation raster, Morris Lake (Newton Reservoir), New Jersey, 2018 DISPfiles_PumpingTestsDomesticBedrockWellsAppalachianPlateau Horizontal-to-Vertical Spectral Ratio Soundings and Depth-to-Bedrock Data for Geohydrology and Water Quality Investigation of the Unconsolidated Aquifers in the Enfield Creek Valley, Town of Enfield, Tompkins County, New York, April 2013 - August 2015 Hydrogeology of the Tully Valley Mudboil Area, Southern Onondaga County, New York Groundwater-level Monitoring for Characterization of Hydraulic Connections in the Basal Sand & Gravel Aquifer, Hoosic River Valley, Hoosick Falls, New York Geospatial Bathymetry Dataset and elevation-area-capacity tables for Morris Lake (Newton Reservoir), New Jersey, 2018 Elevation raster, Morris Lake (Newton Reservoir), New Jersey, 2018 Simulation of Zones of Groundwater Contribution to Three Well Fields Southwest Portion of the Naval Weapons Industrial Reserve Plant, Bethpage, New York Hydrogeology of the Virgil Creek Valley in the Town of Dryden, Tompkins County, New York Horizontal-to-Vertical Spectral Ratio Soundings and Depth-to-Bedrock Data for Geohydrology and Water Quality Investigation of the Unconsolidated Aquifers in the Enfield Creek Valley, Town of Enfield, Tompkins County, New York, April 2013 - August 2015 Determination of Sources of Water to the Tully Valley Mudboils Detailed Aquifer Mapping in the Susquehanna River Valley  in South-Central Broome County –Towns of Conklin and Kirkwood Detailed Aquifer Mapping in Eastern Chemung County – The Chemung River Valley and Adjacent Tributary Valleys Detailed Aquifer Mapping in Wayne County, New York, The Fairport-Lyons Channel Aquifer Nassau Hydrogeologic Maps Hydrogeologic Recharge Settings of the Carbonate-Bedrock Aquifers in Livingston and Monroe Counties, Western New York Natural Methane Occurrence in Water Wells of South-Central New York State- Evaluation of Topographic Position and Hydrogeologic Setting State of the Aquifer, Long Island, New York Detailed Aquifer Mapping in Eastern Broome and Southeastern Chenango Counties, New York Comprehensive Delineation of Groundwater Source Areas and Times-of-travel to Long Island Streams and Estuaries DISPfiles_PumpingTestsDomesticBedrockWellsAppalachianPlateau Digital Contour Database of Closed Depressions Groundwater Availability of the Northern Atlantic Coastal Plain