Skip to main content
Advanced Search

Filters: Tags: Hydrologic model (X) > Types: OGC WMS Layer (X)

2 results (10ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
In Alaska, recent research has identified particular areas of the state where both a lack of soil moisture and warming temperatures increase the likelihood of wildfire. While this is an important finding, this previous research did not take into account the important role that melting snow, ice, and frozen ground (permafrost) play in replenshing soil moisture in the spring and summer months. This project will address this gap in the characterization of fire risk using the newly developed monthly water balance model (MWBM). The MWBM takes into account rain, snow, snowmelt, glacier ice melt, and the permafrost layer to better calculate soil moisture replenishment and the amount of moisture that is lost to the atmosphere...
thumbnail
Wetlands provide critical services to natural and human communities alike, forming important wildlife habitat, storing and filtering water, sequestering carbon, and offering opportunities for recreation. Unfortunately, not only are these valuable ecosystems understudied compared to others, but they are also among the most sensitive to climate change. Climate change threatens wetlands by altering temperature and precipitation, which cause changes in water level and water temperature. Due to this threat, the international community and domestic agencies alike have highlighted the need to better understand wetlands in the face of climate change, from the Intergovernmental Panel on Climate Change, to the Ramsar Convention,...


    map background search result map search result map Modeling the Effects of Climate Change on Wetlands in the Pacific Northwest Improving Characterizations of Future Wildfire Risk in Alaska Modeling the Effects of Climate Change on Wetlands in the Pacific Northwest Improving Characterizations of Future Wildfire Risk in Alaska