Skip to main content
Advanced Search

Filters: Tags: Hydrology (X) > Extensions: Citation (X)

70 results (115ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) model was applied to basins in 14 different hydroclimatic regions to determine the sensitivity and variability of the freshwater resources of the United States in the face of current climate-change projections. Rather than attempting to choose a most likely scenario from the results of the Intergovernmental Panel on Climate Change, an ensemble of climate simulations from five models under three emissions scenarios each was used to drive the basin models. Climate-change scenarios were generated for PRMS by modifying historical precipitation and temperature inputs; mean monthly climate change was derived by calculating changes in mean climates...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/1752-1688.12304/abstract): The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases...
thumbnail
Final Report - Executive Summary: This final project report is prepared to summarize the research project titled “Assessing evapotranspiration rate changes for proposed restoration of the forested uplands of the Desert Landscape Conservation Cooperatives (LCC)” for the Desert LCC of the Bureau of Reclamation as a requirement for closing out the project. This report includes the scope of work, summary of research project, results, and conclusions.Among all of the components of the terrestrial water cycle, evapotranspiration (ET) consumes the largest amount of water. Accurate estimation of ET is very important to understand the influence of ET to the hydrologic response of recharge and runoff processes in the water...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, ATMOSPHERE, ATMOSPHERE, ATMOSPHERIC WATER VAPOR, ATMOSPHERIC WATER VAPOR, All tags...
This recorded presentation is from the April 17, 2014 workshop for the "Integrated Scenarios of the Future Northwest Environment" project. The recording is available on YouTube. The Integrated Scenarios project is an effort to understand and predict the effects of climate change on the Northwest's climate, hydrology, and vegetation. The project was funded by the Northwest Climate Science Center and the Climate Impacts Research Consortium.
Concern over the greenhouse effect has led to increased interest in the regional implications of changes in temperature and precipitation patterns for water resources. The impact of greenhouse gases on water availability and quality is likely to be significant, though still poorly understood. Both the development of scenarios involving temperature and precipitation variation and the use of hydrologic simulation models allows researchers to study the impact of these changes on runoff and water supply.
In 1988, the US Geological Survey began a study of the effects of potential climate change on the water resources of the Gunnison River basin. The Gunnison River, in southwestern Colorado, is an important tributary of the Colorado River, contributing approximately 40% of the flow of the Colorado River at the Colorado/Utah stateline. As part of the study, the sensitivity of annual and seasonal runoff in the East River basin, a sub-basin of the Gunnison River basin, to changes in temperature and precipitation was examined. To perform the sensitivity analyses, hypothetical climate changes were used to alter current time series of temperature and precipitation. The altered time series were then used as inputs to a hydrological...
The flow regime is regarded by many aquatic ecologists to be the key driver of river and floodplain wetland ecosystems. We have focused this literature review around four key principles to highlight the important mechanisms that link hydrology and aquatic biodiversity and to illustrate the consequent impacts of altered flow regimes: Firstly, flow is a major determinant of physical habitat in streams, which in turn is a major determinant of biotic composition; Secondly, aquatic species have evolved life history strategies primarily in direct response to the natural flow regimes; Thirdly, maintenance of natural patterns of longitudinal and lateral connectivity is essential to the viability of populations of many riverine...
The hydrological model TOPMODEL is used to assess the water balance and describe flow paths for the 9·73 ha Lutz Creek Catchment in Central Panama. Monte Carlo results are evaluated based on their fit to the observed hydrograph, catchment-averaged soil moisture and stream chemistry. TOPMODEL, with a direct-flow mechanism that is intended to route water through rapid shallow-soil flow, matched observed chemistry and discharge better than the basic version of TOPMODEL and provided a reasonable fit to observed soil moisture and wet-season discharge at both 15-min and daily time-steps. The improvement of simulations with the implementation of a direct-flow component indicates that a storm flow path not represented in...
The northwestern slope valleys region is a prime candidate site for future science-driven Mars exploration because it records Noachian to Amazonian Tharsis development in a region that encapsulates (1) a diverse and temporally extensive stratigraphic record, (2) at least three distinct paleohydrologic regimes, (3) gargantuan structurally controlled flood valleys that generally correspond with gravity and magnetic anomalies, possibly marking ancient magnetized rock materials exposed by fluvial activity, (4) water enrichment, as indicated by Mars Odyssey and impact crater analyses, (5) long-lived magma and ground water/ice interactions that could be favorable for the development and sustenance of life, and (6) potential...
thumbnail
Two distributed parameter models, a one-dimensional (1D) model and a two-dimensional (2D) model, are developed to simulate overland flow in two small semiarid shrubland watersheds in the Jornada basin, southern New Mexico. The models are event-based and represent each watershed by an array of 1-m2 cells, in which the cell size is approximately equal to the average area of the shrubs. Each model uses only six parameters, for which values are obtained from field surveys and rainfall simulation experiments. In the 1D model, flow volumes through a fixed network are computed by a simple finite-difference solution to the 1D kinematic wave equation. In the 2D model, flow directions and volumes are computed by a second-order...
This study uses an integrative approach to study the water-quality impacts of future global climate and land-use changes. In this study, changing land-use types was used as a mitigation strategy to reduce the adverse impacts of global climate change on water resources. The climate scenarios were based on projections made by the Intergovernmental Panel on Climate Change (IPCC) and the United Kingdom Hadley Centre's climate model (HadCM2). The Thornthwaite water-balance model was coupled with a land-use model (L-THIA) to investigate the hydrologic effects of future climate and land-use changes in the Ohio River Basin. The land-use model is based on the Soil Conservation Service's curve-number method. It uses the curve...
Categories: Publication; Types: Citation; Tags: ASFA 3: Aquatic Pollution & Environmental Quality, Climatic changes, Data Visualization & Tools, Environment management, Freshwater, All tags...
Global demand for energy has increased by more than 50 percent in the last half-century, and a similar increase is projected by 2030. This demand will increasingly be met with alternative and unconventional energy sources. Development of these resources causes disturbances that strongly impact terrestrial and freshwater ecosystems. The Marcellus Shale gas play covers more than 160,934 km(2) in an area that provides drinking water for over 22 million people in several of the largest metropolitan areas in the United States (e.g. New York City, Washington DC, Philadelphia & Pittsburgh). Here we created probability surfaces representing development potential of wind and shale gas for portions of six states in the Central...
thumbnail
Freshwater fish are among the most vulnerable taxa to climate change globally but are generally understudied in tropical island ecosystems. Climate change is predicted to alter the intensity, frequency, and variability of extreme flow events on the Caribbean island of Puerto Rico. These changes may impact Caribbean native and non-native stream ecosystems and biota complex ways. We compiled an extensive dataset of native and non-native fish assemblages collected at 119 sites across Puerto Rico from 2005 to 2015. We coupled these data with stream flow indices and dam height to understand how flow dynamics drive fish assemblage structure. Sixteen percent of sites contained exclusively non-native species, 34% contained...
Quantifying biogeochemical cycles of nitrogen (N) and the associated fluxes to surface waters remains challenging, given the need to deal with spatial and temporal variability and to characterize complex and heterogeneous landscapes. We focused our study on catchments S14 and S15 located in the Adirondack Mountains of New York, USA, which have similar topographic and hydrologic characteristics but contrasting stream nitrate ($\hboxNO_3^-$) concentrations. We characterized the mechanisms by which $\hboxNO_3^-$ reaches the streams during hydrological events in these catchments, aiming to reconcile our field data with our conceptual model of factors that regulate nutrient exports from forested catchments. Combined...
The U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) model was applied to basins in 14 different hydroclimatic regions to determine the sensitivity and variability of the freshwater resources of the United States in the face of current climate-change projections. Rather than attempting to choose a most likely scenario from the results of the Intergovernmental Panel on Climate Change, an ensemble of climate simulations from five models under three emissions scenarios each was used to drive the basin models. Climate-change scenarios were generated for PRMS by modifying historical precipitation and temperature inputs; mean monthly climate change was derived by calculating changes in mean climates...
Tens of millions of people in the Bengal Basin region of Bangladesh and India drink groundwater containing unsafe concentrations of arsenic. This high-arsenic groundwater is produced from shallow (<100 m) depths by domestic and irrigation wells in the Bengal Basin aquifer system. The government of Bangladesh has begun to install wells to depths of >150 m where groundwater arsenic concentrations are nearly uniformly low, and many more wells are needed, however, the sustainability of deep, arsenic-safe groundwater has not been previously assessed. Deeper pumping could induce downward migration of dissolved arsenic, permanently destroying the deep resource. Here, it is shown, through quantitative, large-scale hydrogeologic...
This recorded presentation is from the April 17, 2014 workshop for the "Integrated Scenarios of the Future Northwest Environment" project. The recording is available on YouTube. The Integrated Scenarios project is an effort to understand and predict the effects of climate change on the Northwest's climate, hydrology, and vegetation. The project was funded by the Northwest Climate Science Center and the Climate Impacts Research Consortium.
The south-central U.S. exists in a zone of dramatic transition in terms of eco-climate system diversity. Ecosystems across much of the region rely on warm-season convective precipitation. These convective precipitation is subject to large uncertainties under climate change scenario, possibly leading to gradual or sudden changes in habitats, and ecosystems. The convective precipitation in this region, occurring on a range of time and space scales, is extremely challenging to predict in future climate scenario. In this project, we established a unique, cutting-edge, dynamic downscaling capability to address the challenge of predicting precipitation in the south-central U.S. in current and future climate scenarios....
Vegetation, particularly its dynamics, is the often-ignored linchpin of the land-surface hydrology. This work emphasizes the coupled nature of vegetation-water-energy dynamics by considering linkages at timescales that vary from hourly to interannual. A series of two papers is presented. A dynamic ecohydrological model [tRIBS + VEGGIE] is described in this paper. It reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. The framework focuses on ecohydrology of semiarid environments exhibiting abundant input of solar energy but limiting soil water that correspondingly affects vegetation structure and organization. The...


map background search result map search result map One- and two-dimensional modelling of overland flow in semiarid shrubland, Jornada basin, New Mexico Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC The Effects of Flow Extremes on Native and Non-Native Stream Fishes in Puerto Rico One- and two-dimensional modelling of overland flow in semiarid shrubland, Jornada basin, New Mexico The Effects of Flow Extremes on Native and Non-Native Stream Fishes in Puerto Rico Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC