Skip to main content
Advanced Search

Filters: Tags: Hydrology (X) > partyWithName: U.S. Geological Survey (X)

631 results (174ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
This data release provides a set of Hydrological Simulation Program--Fortran (HSPF) model files representing 5 EPA-selected future climate change scenarios for each of two river basins: Taunton and Sudbury, in Massachusetts. Output from these models are intended for use as input to EPA Watershed Management Optimization Support Tool (WMOST) modeling. Climate scenarios, based on 2036-2065 change from 1975-2004 Representative Concentration Pathways (RCP) 4.5 and 8.5, model effects of air temperature and precipitation changes (in degrees F for air temperature, in percent for precipitation) made to the input historical meteorological time series 1975-2004. Taunton meteorological data is from T.F. Green Airport and the...
thumbnail
These are the data sets in machine readable files from a quantitative dye tracer test conducted at Langle Spring November 13-December 2, 2017 as part of the USGS training class, GW2227 Advanced Field Methods in Karst Terrains, held at the Savoy Experimental Watershed, Savoy Arkansas. Langle Spring is NWIS site 71948218, latitude 36.11896886, longitude -94.34548871. One pound of RhodamineWT dye was injected into a sinking stream at latitude 36.116772 longitude -94.341883 NAD83 on November 13, 2017 at 22:50. The data sets include original fluorimeter data logger files from Langle and Copperhead Springs, Laboratory Sectra-fluorometer files from standards and grab samples, and processed input and output files from the...
thumbnail
Water-quality data for groundwater samples collected from 4,824 sites between 1991 through 2018, and ancillary data and information on sampled wells and principal aquifers, were used to assess the occurrence and distribution of strontium in U.S. groundwater from 32 principal aquifers. This data release includes one tab-delimited text file detailing these data. Table: Chemical data from the U.S. Geological Survey National Water Information System and ancillary data considered for assessment of strontium concentration in U.S. groundwater.
thumbnail
This data release consist of the annual sediment depositional volume at five floodplain and five point bar sites on Powder River in southeastern Montana from 1979 through 2017. These 10 sites are a subgroup of a larger group of cross-sections established in 1975 and 1977 to monitor the channel changes along a 90-kilometer reach of Powder River. In addition to the sediment deposition data, characteristic of the annual peak flood are listed. The data are in 1 Excel files containing worksheets (10) corresponding to each channel cross-section .
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled ACCESS 1.0 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
A total of 27 temperature sensors were deployed along the lower 90 miles of the Yakima River at 7 locations where cold water had been previously observed. These 7 cold-water areas had 3 to 6 temperature sensors installed to document the extent and duration of these cold-water areas and their impacts on mainstem temperatures of the Lower Yakima River. Cold-water areas included the mouths of tributaries, alongside channels, and within alcoves. Sensor deployments ranged from 1 to 2 years beginning in October 2018. All temperature data are included in the Yakima.temperatures.zip folder. Details of each monitoring location are provided in the site.locs.csv file. In addition to the raw data and site location information,...
thumbnail
The hydrologic response units (HRUs) available here were used in the Precipitation Runoff Modeling System (PRMS) of southern Guam documented by Rosa and Hay (2017). A Geographic Information System (GIS) file for the HRUs is provided as a shapefile with attributes ParentHRU, Region, and RegionHRU identifying the numbering convention used in the PRMS_2016 southern Guam model parameter files and Rosa and Hay (2017) report. Hydrologic response units (HRUs) were delineating using the processing steps outlined in Viger and Leavesley (2007) and a 5-meter digital elevation model (DEM) derived by Johnson (2012) using the Joint Airborne LIDAR Bathymetry Technical Center of Expertise topobathy data (National Oceanic and Atmospheric...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The U.S. Geological Survey developed this dataset as part of the Colorado Front Range Infrastructure Resources Project (FRIRP). One goal of the FRIRP was to provide information on the availability of those hydrogeologic resources that are either critical to maintaining infrastructure along the northern Front Range or that may become less available because of urban expansion in the northern Front Range. This dataset extends from the...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set represents potentiometric surface contours for the Minnekahta aquifer, Black Hills, South Dakota.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This digital data set defines the altitudes of the tops of 16 model layers simulated in the Death Valley regional ground-water flow system (DVRFS) transient flow model. The area simulated by the DVRFS transient ground-water flow model is an approximately 45,000 square-kilometer region of southern Nevada and California. The thickness of model layers is derived by sequentially subtracting the altitudes of the uppermost to the lowermost...
Tags: Amargosa Desert, Ash Meadows, California, California Valley, Chicago Valley, All tags...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This digital dataset defines the spring 1961 water-table altitude for the California's Central Valley. It was used to initiate the water-level altitudes for the upper zones of the transient hydrologic model of the Central Valley flow system. The Central Valley encompasses an approximate 50,000 square-kilometer region of California. The complex hydrologic system of the Central Valley is simulated using the USGS numerical modeling...
Tags: Alameda County, Amador County, Butte County, CV-RASA, Calaveras County, All tags...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain. The boundary encompasses an approximate 112,000 square-kilometer region and was based on a map of regional potential developed by Bedinger and Harrill (2004). Where possible, the amount of lateral flow across the segments of the DVRFS model boundary from (or to) the contributing...
Tags: Amargosa Desert, Ash Meadows, California, California Valley, Chicago Valley, All tags...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Recharge in the Death Valley regional ground-water flow system (DVRFS) was estimated from net infiltration simulated by Hevesi and others (2003) using a deterministic mass-balance method. Hevesi and others (2003) estimated potential recharge for the DVRFS, an approximately 100,000 square- kilometer region of southern Nevada and California, using the net-infiltration model, INFILv3. Net infiltration, estimated on a cell-by-cell basis,...
Tags: Amargosa Desert, Ash Meadows, California, California Valley, Chicago Valley, All tags...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Recharge in the Death Valley regional ground-water flow system (DVRFS) was estimated from net infiltration simulated by Hevesi and others (2003) using a deterministic mass-balance method. Hevesi and others (2003) estimated potential recharge for the DVRFS, an approximately 100,000 square-kilometer region of southern Nevada and California, using the net-infiltration model, INFILv3. Net infiltration, estimated on a cell-by-cell basis,...
Tags: Amargosa Desert, Ash Meadows, California, California Valley, Chicago Valley, All tags...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This digital dataset defines the depth of the Corcoran Clay Member of the Tulare Formation. The complex hydrologic system of the Central Valley is simulated using the USGS numerical modeling code MODFLOW-FMP (Schmid and others, 2006b). This simulation is referred to here as the Central Valley Hydrologic Model (CVHM) (Faunt, 2009). Utilizing MODFLOW-FMP, the CVHM simulates groundwater and surface-water flow, irrigated agriculture,...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This digital dataset defines the model grid and altitudes of the top of the 10 model layers and base of the model simulated in the transient hydrologic model of the Central Valley flow system. The Central Valley encompasses an approximate 50,000 square-kilometer region of California. The complex hydrologic system of the Central Valley is simulated using the USGS numerical modeling code MODFLOW-FMP (Schmid and others, 2006), which...
Tags: Alameda County, Amador County, Butte County, CV-RASA, Calaveras County, All tags...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This digital dataset contains the surface-water network for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an approximate 50,000-square-kilometer region of California. The complex hydrologic system of the Central Valley is simulated using the USGS numerical modeling code MODFLOW-FMP (Schmid and others, 2006). This simulation is referred to here as the CVHM (Faunt, 2009). Utilizing MODFLOW-FMP, the CVHM...
Tags: Alameda County, Amador County, Butte County, CV-RASA, Calaveras County, All tags...
thumbnail
This dataset contains all the layers associated with U.S. Geological Survey (USGS) Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) initiative for the Upper Peninsula Restoration Assessment (UPRA) which aims to identify and rank coastal areas with the greatest potential for wetland habitat restoration. Each layer has a unique contribution to the identification of restorable wetlands. The 7 parameters (Parameter 0: Mask, Parameter 1: Hydroperiod, Parameter 2: Wetland Soils, Parameter 3: Flowlines, Parameter 4: Conservation and Recreation Lands, Parameter 5: Impervious Surfaces, and Parameter 6: Land Use) and Index Composite directly correlate to areas that are recommended for restoration. The dikes, degree...


map background search result map search result map Model climate scenario output Taunton and Sudbury river basins, Massachusetts, 2036-2065 change from 1975-2004, Representative Concentration Pathways 4.5 and 8.5 Areas of uncertainty for flood inundation extents at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_breach.shp) Flood inundation depth for a flow of 2,578 cfs (stage 15) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_15.tif) Hydrologic Response Units (HRUs) for the Southern Guam watershed model, PRMS_2016 Sediment Deposition on Floodplains and Point Bars of Powder River in Southeastern Montana from 1979 through 2017 Data sets for a quantitative dye tracer test conducted at the Savoy Experimental Watershed, November 13-December 2, 2017, Savoy, Arkansas Data for the occurrence and distribution of strontium in U.S. groundwater Temperature data collected from the Lower Yakima River from October 2018 to October 2020 Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) Upper Peninsula, U.S. (ver. 2.0, January 2024) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California Net infiltration of the Death Valley regional ground-water flow system, Nevada and California Spring 1961 water table of California's Central Valley (from Williamson and others, 1989) Contours of Corcoran Clay Depth in feet from Page (1986) for the Central Valley Hydrologic Model (CVHM) Surface-Water Network for the Central Valley Hydrologic Model (CVHM) Altitudes of the top of model layers in the Central Valley Hydrologic Model (CVHM) Altitudes of the top of model layers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California Net infiltration of the Death Valley regional ground-water flow system, Nevada and California Digital geospatial datasets in support of hydrologic investigations of the Colorado Front Range Infrastructure Resources Project Potentiometric surface contours for the Minnekahta aquifer, Black Hills area, South Dakota Data sets for a quantitative dye tracer test conducted at the Savoy Experimental Watershed, November 13-December 2, 2017, Savoy, Arkansas Areas of uncertainty for flood inundation extents at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_breach.shp) Flood inundation depth for a flow of 2,578 cfs (stage 15) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_15.tif) Hydrologic Response Units (HRUs) for the Southern Guam watershed model, PRMS_2016 Sediment Deposition on Floodplains and Point Bars of Powder River in Southeastern Montana from 1979 through 2017 Digital geospatial datasets in support of hydrologic investigations of the Colorado Front Range Infrastructure Resources Project Potentiometric surface contours for the Minnekahta aquifer, Black Hills area, South Dakota Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) Upper Peninsula, U.S. (ver. 2.0, January 2024) Model climate scenario output Taunton and Sudbury river basins, Massachusetts, 2036-2065 change from 1975-2004, Representative Concentration Pathways 4.5 and 8.5 Altitudes of the top of model layers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California Contours of Corcoran Clay Depth in feet from Page (1986) for the Central Valley Hydrologic Model (CVHM) Net infiltration of the Death Valley regional ground-water flow system, Nevada and California Net infiltration of the Death Valley regional ground-water flow system, Nevada and California Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California Surface-Water Network for the Central Valley Hydrologic Model (CVHM) Spring 1961 water table of California's Central Valley (from Williamson and others, 1989) Altitudes of the top of model layers in the Central Valley Hydrologic Model (CVHM) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Data for the occurrence and distribution of strontium in U.S. groundwater