Skip to main content
Advanced Search

Filters: Tags: Hydrology (X)

5,649 results (18ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This landing page contains peak-flow frequency analyses by the U.S. Geological Survey Wyoming - Montana Water Science Center. Sets of analyses are published as data releases which are child items to this landing page.
thumbnail
The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with...
thumbnail
‚ÄčThe basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
IMPORTANT NOTE: A more recent version of this data release is available from this link. This data release is the update of the U.S. Geological Survey - ScienceBase data release by Bera and Over (2016), with the processed data through September 30, 2015. The primary data for each year is downloaded from the ANL website (http://gonzalo.er.anl.gov/ANLMET/numeric/) and is processed following the guidelines documented in Over and others (2010) and Bera (2014). Hourly potential evapotranspiration computed using the computer program LXPET (Lamoreux Potential Evapotranspiration). Murphy (2005) describes in detail the computer program LXPET. References Cited: ...
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through statistical...
thumbnail
This dataset, termed "GAGES II", an acronym for Geospatial Attributes of Gages for Evaluating Streamflow, version II, provides geospatial data and classifications for 9,322 stream gages maintained by the U.S. Geological Survey (USGS). It is an update to the original GAGES, which was published as a Data Paper on the journal Ecology's website (Falcone and others, 2010b) in 2010. The GAGES II dataset consists of gages which have had either 20+ complete years (not necessarily continuous) of discharge record since 1950, or are currently active, as of water year 2009, and whose watersheds lie within the United States, including Alaska, Hawaii, and Puerto Rico. Reference gages were identified based on indicators that they...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service; Tags: Alabama, Alaska, All 50 states, Arizona, Arkansas, All tags...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model Mc1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), Water leached in the subsoil (baseflow) and also includes runoff. the output is prsented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain....


map background search result map search result map Simulated runoff under MIROC 3.2 medres A2 (2070-2099 average) in nillimeters for the Pacific Northwest, USA GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow Total soil residual water simulated under MIROC 3.2 medres A2 in cm for October for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under MIROC 3.2 medres A2 in cm for August for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under MIROC 3.2 medres A2 in cm for April for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for August for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under CSIRO MK3 A2 in cm for June for the Pacific Northwest, USA (2070-2099 average) Meteorological Database, Argonne National Laboratory, Illinois, January 1, 1948 - September 30, 2015 Peak-Flow Frequency Analyses by the U.S. Geological Survey Wyoming - Montana Water Science Center Areas of uncertainty for flood inundation extents at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_breach.shp) Flood inundation depth for a flow of 2,578 cfs (stage 15) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_15.tif) Coastal wetlands from Jamaica Bay to western Great South Bay, New York Areas of uncertainty for flood inundation extents at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_breach.shp) Flood inundation depth for a flow of 2,578 cfs (stage 15) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_15.tif) Simulated runoff under MIROC 3.2 medres A2 (2070-2099 average) in nillimeters for the Pacific Northwest, USA Total soil residual water simulated under MIROC 3.2 medres A2 in cm for October for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under MIROC 3.2 medres A2 in cm for August for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under MIROC 3.2 medres A2 in cm for April for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for August for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under CSIRO MK3 A2 in cm for June for the Pacific Northwest, USA (2070-2099 average) Peak-Flow Frequency Analyses by the U.S. Geological Survey Wyoming - Montana Water Science Center GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow