Skip to main content
Advanced Search

Filters: Tags: Ibis (X)

2 results (120ms)   

View Results as: JSON ATOM CSV
Increased land-use intensity (e.g. clearing of forests for cultivation, urbanization), often results in the loss of ecosystem carbon storage, while changes in productivity resulting from climate change may either help offset or exacerbate losses. However, there are large uncertainties in how land and climate systems will evolve and interact to shape future ecosystem carbon dynamics. To address this we developed the Land Use and Carbon Scenario Simulator (LUCAS) to track changes in land use, land cover, land management, and disturbance, and their impact on ecosystem carbon storage and flux within a scenario-based framework. We have combined a state-and-transition simulation model (STSM) of land change with a stock...
Human activities have diverse and profound impacts on ecosystem carbon cycles. The Piedmont ecoregion in the eastern United States has undergone significant land use and land cover change in the past few decades. The purpose of this study was to use newly available land use and land cover change data to quantify carbon changes within the ecoregion. Land use and land cover change data (60-m spatial resolution) derived from sequential remotely sensed Landsat imagery were used to generate 960-m resolution land cover change maps for the Piedmont ecoregion. These maps were used in the Integrated Biosphere Simulator (IBIS) to simulate ecosystem carbon stock and flux changes from 1971 to 2010. Results: Results show that...