Skip to main content
Advanced Search

Filters: Tags: Illinois River (X)

229 results (140ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain on a regular basis. These data are used to support the Center's long-term goals of understanding the UMRS and developing useful products for the Long Term Resource Monitoring Program (LTRMP). In 2000, 1:16,000-scale true color aerial photos were collected on the Mississippi River from Cairo, IL to Minneapolis, MN and the on Illinois River from its confluence with the Mississippi near Grafton, IL to Lake Michigan/Chicago, IL. The photos were collected using a 60% stereo overlap between photos in the same flight line and a 30% overlap between flight lines....
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River System collected in 1994.
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River System collected in 1989.
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River System collected in 1989.
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River System collected in 1989.
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The Rogue River drains 13,390 square kilometers of southwestern Oregon before flowing into the Pacific Ocean near the town of Gold Beach, Oregon. The Rogue River begins in the Cascade Range and traverses the Klamath Mountains, where it gains its largest tributaries, the Applegate (1,994 square kilometers) and Illinois (2,564 square kilometers) Rivers, on its way to the coast. In cooperation with the U.S. Army Corps of Engineers,...
thumbnail
The study at Lemont replicated and expanded upon seismic data collected at that location in 2011 as well as evaluated the pressure field created in the water by the water gun. The replicate data were collected with the water gun placements and input pressure identical to the 2011 study, but added static underwater pressure monitoring. Two 80-in³ water guns were suspended below a platform at depths of 4 and 14 feet. Pressure values were lower when only the gun suspended at 4 feet was fired as compared to firing the single gun at 14 feet and both guns simultaneously, with the latter two producing similar pressures. Data were collected to assess the pressure field produced by two 80-in³ water guns suspended at a depth...
thumbnail
The study at Lemont replicated and expanded upon seismic data collected at that location in 2011 as well as evaluated the pressure field created in the water by the water gun. The replicate data were collected with the water gun placements and input pressure identical to the 2011 study, but added static underwater pressure monitoring. Two 80-in³ water guns were suspended below a platform at depths of 4 and 14 feet. Pressure values were lower when only the gun suspended at 4 feet was fired as compared to firing the single gun at 14 feet and both guns simultaneously, with the latter two producing similar pressures. Data were collected to assess the pressure field produced by two 80-in³ water guns suspended at a depth...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS). Aerial images of Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial images of Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. The CIR aerial images were interpreted and automated using a 31-class LTRM vegetation classification....
thumbnail
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois River floodplain from its confluence with the Mississippi near Grafton, IL to Lake Michigan.
thumbnail
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain on a regular basis. These data are used to support the Center's long-term goals of understanding the UMRS and developing useful products for the Long Term Resource Monitoring Program (LTRMP). In 2000, 1:16,000-scale true color aerial photos were collected on the Mississippi River from Cairo, IL to Minneapolis, MN and the on Illinois River from its confluence with the Mississippi near Grafton, IL to Lake Michigan/Chicago, IL. The photos were collected using a 60% stereo overlap between photos in the same flight line and a 30% overlap between flight lines....
thumbnail
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain on a regular basis. These data are used to support the Center's long-term goals of understanding the UMRS and developing useful products for the Long Term Resource Monitoring Program (LTRMP). In 2000, 1:16,000-scale true color aerial photos were collected on the Mississippi River from Cairo, IL to Minneapolis, MN and the on Illinois River from its confluence with the Mississippi near Grafton, IL to Lake Michigan/Chicago, IL. The photos were collected using a 60% stereo overlap between photos in the same flight line and a 30% overlap between flight lines....
thumbnail
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain on a regular basis. These data are used to support the Center's long-term goals of understanding the UMRS and developing useful products for the Long Term Resource Monitoring Program (LTRMP). In 2000, 1:16,000-scale true color aerial photos were collected on the Mississippi River from Cairo, IL to Minneapolis, MN and the on Illinois River from its confluence with the Mississippi near Grafton, IL to Lake Michigan/Chicago, IL. The photos were collected using a 60% stereo overlap between photos in the same flight line and a 30% overlap between flight lines....
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River System collected in 1994.
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River System collected in 2000.
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River System collected in 2000.
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River System collected in 2000.


map background search result map search result map 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 03 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 04 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 07 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 20 Chicago Sanitary and Ship Canal near Lemont, Illinois Acceleration Data Chicago Sanitary and Ship Canal near Lemont, Illinois Hydrophone Data UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Illinois River Brandon Pool UMRS Floodplain Inundation Attributes - Open River Reach - South - Section 2 UMRS Floodplain Inundation Attributes - Pool 16 UMRS Floodplain Inundation Attributes - Pool 19 Aerial photo mosaic of the Merlin Reach repeat photo site in 1967 Aerial photo mosaic of the Merlin Reach repeat photo site in 1967 Chicago Sanitary and Ship Canal near Lemont, Illinois Acceleration Data Chicago Sanitary and Ship Canal near Lemont, Illinois Hydrophone Data 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 07 UMRS Floodplain Inundation Attributes - Pool 16 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 03 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 20 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 04 UMRS Floodplain Inundation Attributes - Pool 19 UMRS Floodplain Inundation Attributes - Open River Reach - South - Section 2