Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: Interested public (X)

447 results (150ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Information on the nature and distribution of permafrost is critical to assessing the response of Arctic ecosystems to climate change, because thawing permafrost under a warming climate will cause thaw settlement and affect micro-topography, surface water redistribution and groundwater movement, soil carbon balance, trace gas emissions, vegetation changes, and habitat use. While a small-scale regional permafrost map is available, as well as information from numerous site-specific large-scale mapping projects, landscape-level mapping of permafrost characteristics is needed for regional modeling and climate impact assessments. The project addresses this need by: (1) compiling existing soil/permafrost data from available...
Describing the social network that links the interconnected partners is the first step to leverage the network’s capacity to be greater than the sum of its parts.The Northwest Boreal Landscape Conservation Cooperative partners and a social network scientist are applying social network theory to create a system of nodes and edges of a Conservation Social Network. Dr. Patrick Bixler is working with partners to quantify the connections and flow of information. A short series of surveys that began in 2015 will measure the baseline dynamics of partner communication and establish a place from which to set benchmarks and future goals. The idea is to better leverage partner expertise and facilitate collaboration across...
thumbnail
All Conservation Design Elements identified through a multi-year conservation planning effort undertaken by the Appalachian Landscape Conservation Cooperative (LCC). These elements were identified by the program Marxan as meeting collective conservation targets. Datasets include a merged design of all five elements, individual element shapefiles, and a prioritization shapefile (Conservation Design elements outlined by the NatureScape Design that were then placed into a prioritization framework based on Margulis and Pressy 2000).
thumbnail
The capacity of ecosystems to provide services such as carbon storage, clean water, and forest products is determined not only by variations in ecosystem properties across landscapes, but also by ecosystem dynamics over time. ForWarn is a system developed by the U.S. Forest Service to monitor vegetation change using satellite imagery for the continental United States. It provides near real-time change maps that are updated every eight days, and summaries of these data also provide long-term change maps from 2000 to the present.Based on the detection of change in vegetation productivity, the ForWarn system monitors the effects of disturbances such as wildfires, insects, diseases, drought, and other effects of weather,...
thumbnail
WaSSI (Water Supply Stress Index) predicts how climate, land cover, and human population change may impact water availability and carbon sequestration at the watershed level (about the size of a county) across the lower 48 United States. WaSSI users can select and adjust temperature, precipitation, land cover, and water use factors to simulate change scenarios for any timeframe from 1961 through the year 2100.Simulation results are available as downloadable maps, graphs, and data files that users can apply to their unique information and project needs. WaSSI generates useful information for natural resource planners and managers who must make informed decisions about water supplies and related ecosystem services...
thumbnail
This shapefile represents The Nature Conservancy’s (TNC) “essential forests” and “key connectors” in the Central Appalachians Whole System. Essential Forests are built around groups of large forest patches, ecoregional portfolio roll-up sites, and areas with high local integrity and high flow density (from M. Anderson’s resiliency analysis). Key Connectors provide physical linkages among essential forests, have high flow density, and may also include large forest patches and matrix blocks. The polygons were originally delineated by TNC staff at a workshop near Petersburg, West Virginia, on March 9 and 10, 2011. The boundaries were hand-drawn on paper maps and then hand-digitized by A. Watland (TNC-VA) and T. Gagnolet...
thumbnail
The Appalachians are a landscape filled with globally-significant biological diversity and cultural resources that provides essential benefits to large cities and surrounding human communities. The region is also rich in energy resources that meet national and regional demands for energy. As wind, natural gas, and oil energy development expand along with traditional coal, there is an increasing need for research to inform discussions on how to meet immediate and future energy needs while sustaining the health of natural systems. To help address this need, the Appalachian LCC awarded a grant to The Nature Conservancy to assess current and future energy development across the entire region. Assessing Future Energy...
Project Goals and Objectives:1) increase the utility of the International Shorebird Survey (ISS) for making shorebird management and conservation decisions within the South Atlantic Landscape Conservation Cooperative, and2) create a single data management system that can service all partners along the Atlantic coastProject Summary:The utility of the International Shorebird Survey (ISS) has been greatly improved with an upgraded, user-friendly interface for data entry and retrieval. Manomet and ISS have contributed to the increasingly powerful citizen science bird records mechanism in eBird. Historic ISS data collected largely by volunteers as well as professional federal and state biologists over the last 40 years...
thumbnail
Provisional Tennessee State Wildlife Action Plan (TN-SWAP) terrestrial habitat priorities versus results of the population growth model developed by the Tennessee Chapter of The Nature Conservancy, 2008, converted to percent projected developed landcover in the year 2040. Spatial growth model was developed using population growth projections from the University of Tennessee Center for Business and Economic Research (UT-CBER), county urban growth boundaries, 2000 census blocks, and various ancillary datasets.
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
To enhance the chances of restoring and protecting Puerto Rico’s beaches by synthesizing guidelines and procedures on beach characterization and profiling, planting, fertilization, irrigation, maintenance, monitoring, etc. and working to identify, inventory, and prioritize beaches that need and can accommodate stabilization with vegetation, or can become sources of plants for nursery propagation and planting. Information will include all permit requirements for beach restoration projects, including those associated with beaches used by sea turtles for nesting. Within the selected prioritized beaches the CAT will develop an education & awareness program, to demonstrate benefits, address needs & expectations and promote...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
The Integrated Ecosystem Model is designed to help resource managers understand the nature and expected rate of landscape change. Maps and other products generated by the IEM will illustrate how arctic and boreal landscapes are expected to alter due to climate-driven changes to vegetation, disturbance, hydrology, and permafrost. The products will also provide resource managers with an understanding of the uncertainty in the expected outcomes.
thumbnail
Baseline (1961-1990) average winter total precipitation and projected change in precipitation for the northern portion of Alaska. For the purposes of these maps, ‘winter’ is defined as December - February. The Alaska portion of the Arctic LCC’s terrestrial boundary is depicted by the black line. Baseline results for 1961-1990 are derived from Climate Research Unit (CRU) TS 3.1.01 data and downscaled to 2km grids; results for the other time periods (2010-2039, 2040-2069, 2070-2099) are based on the SNAP 5-GCM composite using the AR5-RCP 8.5, downscaled to 2km grids.
thumbnail
Baseline (1961-1990) average winter temperature in and projected change in temperature for for the northern portion of Alaska. For the purposes of these maps, ‘winter’ is defined as December - February. The Alaska portion of the Arctic LCC’s terrestrial boundary is depicted by the black line. Baseline results for 1961-1990 are derived from Climate Research Unit (CRU) TS3.1 data and downscaled to 2km grids; results for the other time periods (2010-2039, 2040-2069, 2070-2099) are based on the SNAP 5-GCM composite using the AR5-RCP 8.5, downscaled to 2km grids.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...


map background search result map search result map Appalachian LCC Landscape Conservation Design Phase 1 Local Build-outs WASSI Future Change in Water Supply Stress Index 1991-2010 ForWarn Mean Summer National Difference Vegetation Index 2009-2013 Amount of inflow stored in upstream dams-rivers Enhancing the utility of International Shorebird Survey data management Gulf Coast Prairie Conservation Planning Atlas NatureScape, Design IEM-CSC Factsheet with Supplement, 2015 Active Layer Thickness 2040 2049 Essential Forests and Key Connectors in the Central Appalachians Whole System Winter Precipitation Maps - RCP 8.5, Inches Potential Evapotranspiration 2040-2049: ECHAM5 - A1B Scenario Annual Temperature Maps - RCP 6.0, Fahrenheit Dunes Conservation Action Team Historical Stand Age 1870-1879 Historical Stand Age 1900-1909 Future Energy Development Tool Public Provisional Tennessee State Wildlife Action Plan Potential Urban Growth Permafrost Database Development, Characterization, and Mapping for Northern Alaska Dunes Conservation Action Team Provisional Tennessee State Wildlife Action Plan Potential Urban Growth Essential Forests and Key Connectors in the Central Appalachians Whole System Enhancing the utility of International Shorebird Survey data management Permafrost Database Development, Characterization, and Mapping for Northern Alaska Gulf Coast Prairie Conservation Planning Atlas WASSI Future Change in Water Supply Stress Index 1991-2010 NatureScape, Design Future Energy Development Tool Public Appalachian LCC Landscape Conservation Design Phase 1 Local Build-outs Amount of inflow stored in upstream dams-rivers ForWarn Mean Summer National Difference Vegetation Index 2009-2013 IEM-CSC Factsheet with Supplement, 2015 Active Layer Thickness 2040 2049 Potential Evapotranspiration 2040-2049: ECHAM5 - A1B Scenario Historical Stand Age 1870-1879 Historical Stand Age 1900-1909 Winter Precipitation Maps - RCP 8.5, Inches Annual Temperature Maps - RCP 6.0, Fahrenheit