Skip to main content
Advanced Search

Filters: Tags: Irrigation (X) > partyWithName: Water Resources (X)

82 results (46ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This layer is geographically based on Bureau of Land Management (BLM) and U.S. General Land Office Geographic Coordinate Data Base (GCDB) 1:24,000-scale Land survey Information System Data Base (LSIS) data for the states of Nevada and Utah sourced from the U.S. Geological Survey (USGS) Digital Line Graph (DLG) dataset. Tabular data is derived from the Nevada Division of Water Resources (NDWR) Crop Inventory Data. NDWR inventories...
thumbnail
The shapefile associated with this metadata file represents the spatial distribution of mean annual water-budget components, in inches, for Hawaii Island, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of predevelopment conditions (1916-83 rainfall and 1870 land cover), as described in USGS Scientific Investigations Report (SIR) 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea data set, consisting of 467,805 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets. Spatial datasets...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The Klamath Basin Restoration Agreement (KBRA) was developed by a diverse group of stakeholders, Federal and State resource management agencies, Tribal representatives, and interest groups to provide a comprehensive solution to ecological and water-supply issues in the Klamath Basin. The Off-Project Water Program (OPWP), one component of the KBRA, has as one of its purposes to permanently provide an additional 30,000 acre-feet of...
thumbnail
A soil-water balance model (SWB) was developed to estimate potential recharge and irrigation water demand from the groundwater flow system in Florida and parts of Georgia, Alabama, and South Carolina for the period 1895 through 2010. This SWB model executable code detailed in the report SWB—A Modified Thornthwaite-Mather Soil-Water-Balance Code for Estimating Groundwater Recharge; Chapter 31 of Section A, Groundwater, of Book 6, Modeling Techniques By S.M. Westenbroek, V.A. Kelson,W.R. Dripps,R.J. Hunt, and K.R. Bradbury (https://pubs.usgs.gov/tm/tm6-a31/) The SWB model was not calibrated; however, various water budget components from the model output compared reasonably well with other estimates including irrigation...
thumbnail
This dataset consists of a series of rasters covering the conterminous United States. Each raster is a one kilometer (km) grid for 18 selected Census of Agriculture statistics mapped to land use pixels for the time period 1950 to 2012. A supplemental set of 9 statistics mapped at the entire county level are also provided as 1-km rasters. The rasters are posted as ArcGIS grids. The statistics represent values for crops, livestock, irrigation, fertilizer, and manure usage. Most statistics are mapped for all 14 Census of Agriculture reporting years in that time frame: 1950, 1954, 1959, 1964, 1969, 1974, 1978, 1982, 1987, 1992, 1997, 2002, 2007, and 2012.
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for a projected climate condition representative of phase 3 of the Coupled Model Intercomparison Project (CMIP3) A1B 2080-99 scenario climate and 2017 land cover, as described in USGS SIR 2019-5064. The water-budget components for each model subarea were computed for the future climate condition using a water-budget model developed by Johnson and others (2018). The 2017 land-cover map developed by Mair (2018) was used to define the land-cover conditions and the model subareas. The shapefile attribute information associated with each subarea (or polygon) present an estimate of mean...
thumbnail
These shapefiles represent the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for a set of eight future climate and land-cover scenarios. The future climate conditions used in the water-budget analyses were derived from two end-of-century downscaled climate projections including (1) a projected future climate condition representative of phase 3 of the Coupled Model Intercomparison Project (CMIP3) A1B 2080-99 scenario climate described in Zhang and others (2016a, 2016b) and (2) a projected future climate condition representative of phase 5 of the Coupled Model Intercomparison Project (CMIP5) Representative Concentration Pathway 8.5 (RCP8.5) 2080-99 scenario...
thumbnail
Actual evapotranspiration (ETa) values estimated for specified areas including 1) total county areas; 2) potentially irrigated areas within each county; and 3) mapped extents of irrigated lands within each county provided by some states. These ETa estimates were provided to the USGS National Water Use Science Project by the USGS Earth Resources Observation and Science (EROS) Center (Gabriel Senay and MacKenzie Friedrichs, written communication, 2/20/2017) and are based on 1-square kilometer resolution 2015 Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data analyzed through the operational Simplified Surface Energy Balance (SSEBop) model using methods of Senay and others (2013). Reference: Senay,...
thumbnail
Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Crops were estimated via satellite imagery or verified in situ for 2014-2018, based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2015 and 2017 as well as the Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandsatLook Viewer (https://landlook.usgs.gov/landlook/). Satellite images were also used to observe crop type, crop growing season, crop condition, and irrigation system characteristics. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for a projected climate condition representative of phase 5 of the Coupled Model Intercomparison Project (CMIP5) Representative Concentration Pathway 8.5 (RCP8.5) 2071-99 scenario rainfall and 2017 land cover, as described in USGS SIR 2019-5064. The water-budget components for each model subarea were computed for the future climate condition using a water-budget model developed by Johnson and others (2018). The 2017 land-cover map developed by Mair (2018) was used to define the land-cover conditions and the model subareas. The shapefile attribute information associated with each subarea...
thumbnail
Median summer water yields and resultant flows are used in Michigan to regulate large water withdrawals to help prevent negative effects on characteristic fish populations. Large water withdrawals commonly are associated with irrigation in rural areas. In an earlier statewide report, an index-flow statistic for the period of record, defined as the median flow during the summer month of lowest flow, was used to characterize median summer flows and associated water yields. In this report, the annual series of median summer water yields for the period July 1 through September 30 within the period of record is used to characterize median summer water yields. For 27 streamgages included in both reports, the average index...
Categories: Data; Tags: Allegan County, Michigan, Barry County, Michigan, Berrien County, Michigan, Branch County, Michigan, Calhoun County, Michigan, All tags...
thumbnail
Irrigation runoff and soil samples were collected from a lettuce field located at the USDA-ARS Spence Research farm in the Salinas Valley, California to measure neonicotinoid insecticides (clothianidin and imidacloprid) and a fungicide (azoxystrobin) applied via coated seed and drench treatments. The field trial was designed to evaluate four treatments with replication: 1) control, untreated seed, 2) imidacloprid treated seed, 3) clothianidin treated seed, and 4) azoxystrobin treated seed with an imidacloprid drench. Samples were collected from each treatment over two lettuce growing seasons: August to October 2019 and September to October 2020. Runoff samples were collected over both growing seasons during 6 irrigation...
thumbnail
Observations of irrigated agricultural land within the Willcox Groundwater Basin in Arizona. Digitized field boundaries were used to locate crops for in situ verification twice in 2022; crop verification occurred first on May 17th and again on August 26th. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program County Mosaic 2021 imagery for Arizona and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The water-budget-components geodatabase contains selected data from maps in the, "Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 through 1949 and 2000 through 2009" report (Stanton and others, 2011). Data were collected and synthesized from existing climate models including the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Daly and others, 1994), and the Snow accumulation and...
thumbnail
The shapefile associated with this metadata file represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Oahu, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of average climate conditions (1978–2007 rainfall) and 2010 land cover, as described in USGS Scientific Investigations Report (SIR) 2015-5010. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model subareas were generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets that characterize the spatial distribution of rainfall, fog...
To accurately estimate agricultural water use or to project future water demands, a detailed inventory of current irrigated crop acreage is needed at a high level of resolution. In many Florida counties this kind of detailed high-resolution inventory is not available. A detailed digital map and summary of irrigated acreage during the 2015 growing season was developed for 13 of the 15 counties that compose the Suwannee River Water Management District. The irrigated areas were delineated using land-use data, orthoimagery, water management district consumptive water-use permits, and digitized agricultural landuse maps developed by the Florida Department of Agriculture and Consumer Services, Florida Statewide Agricultural...
thumbnail
Observations of irrigated agricultural land within the Lower San Pedro Groundwater Basin in Arizona. Crops were verified in situ once in 2020 on July 14th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle...
thumbnail
These data are a subset of categories and items from county-level data for the conterminous United States covering the census reporting years beginning with the 1950 Census of Agriculture and ending with the 2012 Census of Agriculture. Historical (1950-1997) data were extracted from digital files obtained through the Intra-university Consortium on Political and Social Research (ICPSR). More current (1997-2012) data were extracted from the National Agriculture Statistical Service(NASS) Census Query Tool for the census years of 1997, 2002, 2007, and 2012. Please refer to the Supplemental Information element of the metadata for information on the Census of Agriculture, the Inter-university Consortium for Political...
thumbnail
Observations of irrigated agricultural land within the San Simon Valley Groundwater Subbasin of the Safford Groundwater Basin. Digitized field boundaries were used to locate crops for in situ verification twice in 2022; crop verification occurred first on May 18th and again on August 24th. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program County Mosaic 2021 imagery for Arizona and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were...
thumbnail
As part of the Coastal Carolinas Focus Area Study of the U.S. Geological Survey National Water Census Program, the Soil and Water Assessment Tool (SWAT) was used to develop models for the Pee Dee River Basin, North Carolina and South Carolina, to simulate future streamflow and irrigation demand based on land use, climate, and water demand projections. SWAT is a basin-scale, process-based watershed model with the capability of simulating water-management scenarios. Model basins were divided into approximately two-square mile subbasins and subsequently divided into smaller, discrete hydrologic response units based on land use, slope, and soil type. The calibration period for the historic model was 2000 to 2014. The...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Alexander, Alleghany, Anson, Ashe, Bladen, All tags...


map background search result map search result map Selected items from the Census of Agriculture at the county level for the conterminous United States, 1950-2012 National 1-kilometer rasters of selected Census of Agriculture statistics allocated to land use for the time period 1950 to 2012 Data on Factors Affecting Spatial and Temporal Variations of Annual Summer Median Water Yields in Southwestern Michigan, 1945-2015 Mean annual water-budget components for the Island of Maui, Hawaii, for projected climate conditions, CMIP3 A1B 2080-99 scenario climate and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for projected climate conditions, CMIP5 RCP8.5 2071-99 scenario rainfall and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for a set of eight future climate and land-cover scenarios 2015 calendar-year county-level estimates of actual evapotranspiration for the conterminous United States and Hawaii Soil and Water Assessment Tool (SWAT) models for the Pee Dee River Basin used to simulate future streamflow and irrigation demand based on climate and urban growth projections Insecticide and fungicide concentrations in irrigation runoff and soils from a lettuce field in the Salinas Valley, California, 2019 and 2020 Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2014-2018 Estimated crop irrigation water use withdrawals in Lower San Pedro Groundwater Basin, Arizona for 2020 Soil-Water Balance model datasets used to estimate groundwater recharge in Florida and parts of Georgia, Alabama, and South Carolina, 1895-2010 DS-777 Average Annual Irrigation Withdrawals, 2000 to 2009, in inches estimated from the Soil Water Balance (SWB) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Klamath Basin Water Rights Place of Use Mean annual water-budget components for the Island of Oahu, Hawaii, for average climate conditions, 1978-2007 rainfall and 2010 land cover (version 2.0) Mean annual water-budget components for Hawaii Island, Hawaii, for predevelopment conditions, 1916-83 rainfall and 1870 land cover Nevada Department of Water Resources State Crop Inventories for Newark, Little Smoky, and Steptoe Valleys 2000, 2002, and 2005 Estimated crop irrigation water use withdrawals in San Simon Valley Groundwater Subbasin of the Safford Groundwater Basin, Arizona for 2022 Estimated crop irrigation water use withdrawals in Willcox Groundwater Basin, Arizona for 2022 Insecticide and fungicide concentrations in irrigation runoff and soils from a lettuce field in the Salinas Valley, California, 2019 and 2020 Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2014-2018 Mean annual water-budget components for the Island of Oahu, Hawaii, for average climate conditions, 1978-2007 rainfall and 2010 land cover (version 2.0) Mean annual water-budget components for the Island of Maui, Hawaii, for projected climate conditions, CMIP3 A1B 2080-99 scenario climate and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for projected climate conditions, CMIP5 RCP8.5 2071-99 scenario rainfall and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for a set of eight future climate and land-cover scenarios Estimated crop irrigation water use withdrawals in San Simon Valley Groundwater Subbasin of the Safford Groundwater Basin, Arizona for 2022 Estimated crop irrigation water use withdrawals in Willcox Groundwater Basin, Arizona for 2022 Estimated crop irrigation water use withdrawals in Lower San Pedro Groundwater Basin, Arizona for 2020 Nevada Department of Water Resources State Crop Inventories for Newark, Little Smoky, and Steptoe Valleys 2000, 2002, and 2005 Klamath Basin Water Rights Place of Use Mean annual water-budget components for Hawaii Island, Hawaii, for predevelopment conditions, 1916-83 rainfall and 1870 land cover Data on Factors Affecting Spatial and Temporal Variations of Annual Summer Median Water Yields in Southwestern Michigan, 1945-2015 Soil and Water Assessment Tool (SWAT) models for the Pee Dee River Basin used to simulate future streamflow and irrigation demand based on climate and urban growth projections Soil-Water Balance model datasets used to estimate groundwater recharge in Florida and parts of Georgia, Alabama, and South Carolina, 1895-2010 DS-777 Average Annual Irrigation Withdrawals, 2000 to 2009, in inches estimated from the Soil Water Balance (SWB) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Selected items from the Census of Agriculture at the county level for the conterminous United States, 1950-2012 National 1-kilometer rasters of selected Census of Agriculture statistics allocated to land use for the time period 1950 to 2012 2015 calendar-year county-level estimates of actual evapotranspiration for the conterminous United States and Hawaii