Skip to main content
Advanced Search

Filters: Tags: Karst (X) > Types: Citation (X)

40 results (54ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
Subterranean estuaries extend inland into density-stratified coastal carbonate aquifers that contain a surprising diversity of endemic animals (mostly crustaceans) within a highly oligotrophic environment. How complex ecosystems thrive in this globally-distributed, cryptic habitat (termed anchialine) is poorly understood. The northeastern margin of the Yucatan Peninsula contains over 250 km of mapped, diver-accessible caves passages where previous studies have suggested chemoautotrophic processes are the source of carbon and energy sustaining the anchialine food web. This dataset, collected during four field events during U.S. Geological Survey (USGS) Coastal and Marine Geology Program Field Activities 2015-013-FA...
thumbnail
Cave-limited species display patchy and restricted distributions, but are challenging to study in-situ because of the difficulty of sampling. It is often unclear whether the observed distribution is a sampling artifact or a true restriction in range. Further, the drivers of the distribution could be local environmental conditions, such as cave humidity, or they could be associated with surface features that are surrogates for cave conditions. If surface features can be used to predict the distribution of important cave taxa, then conservation management goals can be more easily obtained. These GIS data represent the input and results of a spatial statistical model used to examine the hypothesis that the presence...
A tracer experiment, using a nonreactive tracer, was conducted as part of an investigation of the potential for chemical and pathogen migration to public supply wells that draw groundwater from the highly transmissive karst limestone of the Biscayne aquifer in southeastern Florida. The tracer was injected into the formation over approximately 1 h, and its recovery was monitored at a pumping well approximately 100 m from the injection well. The first detection of the tracer occurred after approximately 5 h, and the peak concentration occurred at about 8 h after the injection. The tracer was still detected in the production well more than 6 days after injection, and only 42% of the tracer mass was recovered. It is...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
A tracer experiment, using a nonreactive tracer, was conducted as part of an investigation of the potential for chemical and pathogen migration to public supply wells that draw groundwater from the highly transmissive karst limestone of the Biscayne aquifer in southeastern Florida. The tracer was injected into the formation over approximately 1 h, and its recovery was monitored at a pumping well approximately 100 m from the injection well. The first detection of the tracer occurred after approximately 5 h, and the peak concentration occurred at about 8 h after the injection. The tracer was still detected in the production well more than 6 days after injection, and only 42% of the tracer mass was recovered. It is...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
The Edwards and Trinity aquifers are major sources of water in south-central Texas and are both classified as major aquifers by the State of Texas. The population in Hays and Comal Counties is rapidly growing, increasing demands on the area's water resources. To help effectively manage the water resources in the area, refined maps and descriptions of the geologic structures and hydrostratigraphic units (HSUs) of the aquifers are needed. This digital map database presents the detailed 1:24,000-scale bedrock hydrostratigraphic map as well as names and descriptions of the geologic and hydrostratigraphic units of the Driftwood and Wimberley 7.5-minute quadrangles in Hays and Comal Counties, Tex. These digital data...
thumbnail
This USGS Data Release represents tabular data for chemical and physical attributes, rates of deposition, erosion, and mineralization of bank and floodplain sediments and soils from five study sites in the Smith Creek watershed between 2012 and 2015. The data release was produced in compliance with the new 'open data' requirements as a way to make the scientific products associated with USGS research efforts and publications available to the public. The dataset consists of 2 separate items: 1. Smith Creek floodplain soils dataset (tabular data) 2. Smith Creek bank soils dataset (tabular data) These data support the following publication: Gillespie, J.L., Noe, G.B., Hupp, C.R., Gellis, A.C., and Schenk, E.R.,...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...


map background search result map search result map GIS data for predicting the occurrence of cave-inhabiting fauna based on features of the Earth surface environment in the Appalachian Landscape Conservation Cooperative (LCC) Region Cave and Karst Biota Modeling in the Appalachian LCC - Predicted Amphipods in all 20km grid cells in karst Cave and Karst Biota Modeling in the Appalachian LCC - Predicted Amphipods in sampled 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Observed ground beetles in 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Observed troglobiotic fish in 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted troglobiotic fish in all 20km grid cells in karst Cave and Karst Biota Modeling in the Appalachian LCC - Predicted troglobiotic fish in sampled 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted troglobiotic crayfish in all 20km grid cells in karst Cave and Karst Biota Modeling in the Appalachian LCC - Predicted troglobiotic crayfish in sampled 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted asellid isopods in all 20km grid cells in karst Cave and Karst Biota Modeling in the Appalachian LCC - Predicted millipedes in all 20km grid cells in karst Cave and Karst Biota Modeling in the Appalachian LCC - Predicted millipedes in sampled 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted spiders in all 20km grid cells in karst Cave and Karst Biota Modeling in the Appalachian LCC - Observed springtails in 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted endemics in sampled 20km grid cells Floodplain sedimentation, bank erosion, and biogeochemical cycling of sediment and nutrients in Smith Creek (Virginia) 2012-2015: U.S. Geological Survey data release Sonde data to characterize physical and chemical properties of the Cenote Bang, a component of the Ox Bel Ha cave network within the subterranean estuary coastal aquifer of the Yucatan Peninsula, from December 2013 to January 2016 Data release for bedrock geology and hydrostratigraphy of the Edwards and Trinity Aquifers within the Driftwood and Wimberley 7.5-Minute Quadrangles, Hays and Comal Counties, Texas at 1:24,000 scale Sonde data to characterize physical and chemical properties of the Cenote Bang, a component of the Ox Bel Ha cave network within the subterranean estuary coastal aquifer of the Yucatan Peninsula, from December 2013 to January 2016 Data release for bedrock geology and hydrostratigraphy of the Edwards and Trinity Aquifers within the Driftwood and Wimberley 7.5-Minute Quadrangles, Hays and Comal Counties, Texas at 1:24,000 scale Floodplain sedimentation, bank erosion, and biogeochemical cycling of sediment and nutrients in Smith Creek (Virginia) 2012-2015: U.S. Geological Survey data release Cave and Karst Biota Modeling in the Appalachian LCC - Observed troglobiotic fish in 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted troglobiotic fish in sampled 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted troglobiotic crayfish in sampled 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted millipedes in sampled 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Observed ground beetles in 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted endemics in sampled 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Observed springtails in 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted Amphipods in sampled 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted troglobiotic fish in all 20km grid cells in karst Cave and Karst Biota Modeling in the Appalachian LCC - Predicted Amphipods in all 20km grid cells in karst Cave and Karst Biota Modeling in the Appalachian LCC - Predicted troglobiotic crayfish in all 20km grid cells in karst Cave and Karst Biota Modeling in the Appalachian LCC - Predicted asellid isopods in all 20km grid cells in karst Cave and Karst Biota Modeling in the Appalachian LCC - Predicted millipedes in all 20km grid cells in karst Cave and Karst Biota Modeling in the Appalachian LCC - Predicted spiders in all 20km grid cells in karst GIS data for predicting the occurrence of cave-inhabiting fauna based on features of the Earth surface environment in the Appalachian Landscape Conservation Cooperative (LCC) Region