Filters: Tags: Kaua'i (X)
12 results (91ms)
Filters
Date Range
Extensions Types
Contacts
Categories Tag Types Tag Schemes |
The shapefiles in this dataset represent the spatial distribution of mean annual water-budget components, in inches, for Kauaʻi, Oʻahu, Molokaʻi, Lānaʻi, Maui, and the Island of Hawaiʻi, for a set of recent and future climate conditions, and 2020 land cover. The four main climate scenarios used in the water-budget analyses include a reference climate scenario representative of recent conditions during 1978–2007, hereinafter the 1978–2007 scenario, and three downscaled future-climate projections that span a range of future-climate conditions for each island. The three future-climate projections include (1) a mid-century scenario using projected rainfall conditions representative of phase 5 of the Coupled Model Intercomparison...
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Hawai`i,
Hydrology,
Kaua'i,
Lānaʻi,
Maui,
Native and introduced forest birds were captured and then released across the Hawaiian Islands to acquire a blood sample for obtaining DNA and test for exposure to avian malaria (Plasmodium relictum). A total of 2,945 samples were collected and analyzed for avian malaria prevalence from 39 species captured at 66 sites from Kauai, Oahu, Molokai, Maui, and Hawaii islands.
This portion of the data release presents radiocarbon age data from 66 samples collected from Anahola Valley (Kaua'i), Kahana Valley (O'ahu), and Pololu Valley (Hawai'i). Sample ages were determined by the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. The data are provided in a comma-delimited spreadsheet (.csv).
Categories: Data;
Tags: Anahola Valley,
CMHRP,
Coastal and Marine Hazards and Resources Program,
Hawai'i,
Hawaiian Islands,
This data release provides flooding extent polygons and flood depth rasters (geotiffs) based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian, Mariana, and American Samoan Islands. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10 square meter resolution along these islands’ coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level...
Categories: Data,
Data Release - Revised;
Tags: CMHRP,
Climate Change,
Coastal Processes,
Coastal and Marine Hazards and Resources Program,
Earth sciences,
This data release provides flooding extent polygons (flood masks) and depth values (flood points) based on wave-driven total water levels for 22 locations within the States of Hawaii and Florida, the Territories of Guam, American Samoa, Puerto Rico, and the U.S. Virgin Islands, and the Commonwealth of the Northern Mariana Islands. For each of the 22 locations there are eight associated flood mask polygons and flood depth point files: one for each four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. These flood masks can be combined with economic, ecological, and engineering tools to provide a rigorous financial valuation...
This portion of the data release presents sediment grain-size data from samples collected from Anahola Valley, Kaua`i, Hawai`i in November, 2015 (USGS Field Activity 2015-671-FA). 63 sand and mud samples were taken from sediment cores that were collected using a Russian corer (a hand-held, side-filling peat auger) from two site locations. Site locations were determined using a hand-held global navigation satellite system, GNSS. The grain-size distributions of samples were determined using standard techniques developed by the USGS Pacific Coastal and Marine Science Center sediment lab. The grain-size data are provided in a comma-delimited spreadsheet (.csv). Core ANA15-RC1 BR contained two carbonate sand layers (Sand...
Categories: Data;
Tags: Anahola Valley,
CMHRP,
Coastal and Marine Hazards and Resources Program,
Hawaiian Islands,
Kaua'i,
This data release provides flood depth GeoTIFFs based on potential future sea-level rise (SLR)for the coast of the most populated Hawaiian Islands of O'ahu, Moloka'i, Kaua'i, Maui, and Big Island. Digital elevation models were used to extract SLR flooded areas at 10-m2 resolution along the coastlines for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios.
Categories: Data;
Tags: CMHRP,
Climate Change,
Coastal Processes,
Coastal and Marine Hazards and Resources Program,
Earth sciences,
This data release provides flooding extent polygons based on potential future sea-level rise (SLR) water levels for the coast of the most populated Hawaiian Islands of O'ahu, Moloka'i, Kaua'i, Maui, and Big Island. Digital elevation models were used to extract SLR flooded areas along the coastlines at 10-m2 resolution and converted to polygon shapefiles of the extents for +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios.
Categories: Data;
Tags: CMHRP,
Climate Change,
Coastal Processes,
Coastal and Marine Hazards and Resources Program,
Earth sciences,
Steady-state numerical groundwater-flow models were constructed for the islands of Kaua'i, O'ahu, and Maui, Hawai'i. Separate models were created for each island using MODFLOW-2005 (Harbaugh, 2005) with the Seawater Intrusion (SWI2) package (Bakker and others, 2013), which allows simulation of freshwater and saltwater in ocean-island aquifers. The purpose of the models is to enable quantification of the hydrologic effects of withdrawals and changes in climate. These effects include water-table depression, saltwater rise, and reduction of natural groundwater discharge to streams, springs, and the ocean. The effects can place limits on groundwater availability. This USGS data release contains all of the input and...
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian Islands of Oahu, Molokai, Kauai, Maui, and Big Island. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution along these islands' coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios.
Categories: Data;
Tags: CMHRP,
Climate Change,
Coastal Processes,
Coastal and Marine Hazards and Resources Program,
Earth sciences,
This portion of the data release contains information on vibracores that were collected by the U.S. Geological Survey in Anahola Valley, Kaua'i, Hawai'i in 2015. Sites were cored in order to identify potential tsunami deposits and describe wetland stratigraphy. These vibracores contain mud, peat, volcanic sands, and carbonate sands, reflecting deposition in a variety of coastal environments. PDF files describe eight (8) vibracores that were split, imaged by a line-scanner camera, scanned to generate computed tomagraphic (CT) images, and visually described. Another pdf file (Anahola_cores_legend.pdf) contains a core-log legend. A comma-delimited text file (Anahola_sand_thickness.csv) includes tabulated information...
Categories: Data;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: Anahola Valley,
CMHRP,
Coastal and Marine Hazards and Resources Program,
Hawaiian Islands,
Kaua'i,
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian Islands of Oahu, Molokai, Kauai, Maui, and Big Island. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated Hawaiian Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution along the coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios.
Categories: Data;
Tags: CMHRP,
Climate Change,
Coastal Processes,
Coastal and Marine Hazards and Resources Program,
Earth sciences,
|
|