Skip to main content
Advanced Search

Filters: Tags: LAND SURFACE MODELS (X)

3 results (16ms)   

View Results as: JSON ATOM CSV
This study explores the influence of variable soil depths on simulated land?atmosphere exchanges from a currently operational land surface model over the North American Monsoon (NAM) region of southwestern North America. It is shown that the neglect of observed (actual) soil depths can limit land surface model performance at the sites studied. The main impact of accounting for shallower soil depths is to increase the dispersion, (i.e. the dynamic range) of sensible and latent heat fluxes when compared with simulations using a common fixed soil column depth of 2 meters. It is also shown that accounting for local soil depth variability can, moderately, improve land surface model flux estimation as compared with tower...
thumbnail
There is a growing interest in incorporating higher-resolution groundwater modeling within the framework of large-scale land surface models (LSMs), including new processes such as three- dimensional flow, variable soil saturation, and surface water/groundwater interactions. Conversely, complex groundwater models (e.g., the U.S. Geological Survey Groundwater-Flow Model, MODFLOW) often use simpler representations of land surface dynamics (e.g., surface vegetation, evapotranspiration, recharge) and may benefit from higher process fidelity and temporal resolutions in these inputs. This study investigates the potential of improving groundwater representation in LSMs and land surface dynamics in MODFLOW through coupling...
The cascade of uncertainty that underscores climate impact assessments of regional hydrology undermines their value for long-term water resources planning and management. This study presents a statistical framework that quantifies and propagates the uncertainties of hydrologic model response through projections of future streamflow under climate change. Different sources of hydrologic model uncertainty are accounted for using Bayesian modeling. The distribution of model residuals is formally characterized to quantify predictive skill, and Markov chain Monte Carlo sampling is used to infer the posterior distributions of both hydrologic and error model parameters. Parameter and residual error uncertainties are integrated...


    map background search result map search result map MODFLOW models for the simulation of groundwater-flow dynamics in the U.S. Northern High Plains driven by multi-model estimates of surficial aquifer recharge. MODFLOW models for the simulation of groundwater-flow dynamics in the U.S. Northern High Plains driven by multi-model estimates of surficial aquifer recharge.