Skip to main content
Advanced Search

Filters: Tags: LANDSCAPE PROCESSES (X)

138 results (17ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These rasters represent output from the Boreal ALFRESCO (Alaska Frame Based Ecosystem Code) model. Boreal ALFRESCO operates on an annual time step, in a landscape composed of 1 x 1 km pixels, a scale appropriate for interfacing with mesoscale climate and carbon models. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Coverage of this dataset includes much of the state of Alaska (but does exclude Southeastern AK, Kodiak Island, portions of the Alaska Peninsula, and the Aleutian Islands)....
thumbnail
These rasters represent output from the Boreal ALFRESCO (Alaska Frame Based Ecosystem Code) model. Boreal ALFRESCO operates on an annual time step, in a landscape composed of 1 x 1 km pixels, a scale appropriate for interfacing with mesoscale climate and carbon models. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Coverage of this dataset includes much of the state of Alaska (but does exclude Southeastern AK, Kodiak Island, portions of the Alaska Peninsula, and the Aleutian Islands)....
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated mean annual ground temperature (MAGT) in Celsius, averaged across a decade, at the base of active layer or at the base of the seasonally frozen soil column. The file name specifies the decade the raster represents. For example, a file named MAGT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated mean annual ground temperature (degree C) at the base of the active layer (for areas with permafrost) or at the base of the soil column that is seasonally frozen (for areas without permafrost). If the value of the cell is negative,the area has permafrost and the...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
This project resulted in an extensive mapping of coastal change along the entire coastline of the Western Alaska Landscape Conservation Cooperative (LCC). The work provides important baseline information on the distribution and magnitude of landscape changes over the past 41 years. The extent of change to the coastline and to coastal features, such as spits, barrier islands, estuaries, tidal guts and lagoons, was known to be substantial in some areas along the coast (e.g., portions of the Yukon–Kuskokwim Delta), although the extent of change along the full Bering Sea coast was not well documented. With this analysis, changes can be summarized for different land ownerships or other units to assess the extent of recent...
Categories: Data; Tags: BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, COASTAL AREAS, All tags...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_CRU_Historical_annual_1930-1939.tif represents the decade spanning 1930-1939. The data were generated by using the Hamon equation and output from a statistically downscaled version of the Hadley Centre’s CRU TS3.0 observational dataset. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users are reminded that the PET estimates...
thumbnail
Permafrost is a unique characteristic of polar regions and high mountains and is fundamentalto geomorphic processes and ecological development in permafrost-affected environments.Because permafrost impedes drainage and ice-rich permafrost settles upon thawing, degradationof permafrost in response to climate change will have large consequences for tundra and borealecosystems (Osterkamp 2005, Jorgenson and Osterkamp 2005, Shur and Osterkamp 2007,Jorgenson et al. 2010, 2013). Thawing permafrost affects surface hydrology by impoundingwater in subsiding areas and enhances drainage of upland areas. Changes in soil drainage altersoil carbon dynamics, habitats for vegetation and wildlife, and emissions of greenhouse gases(Ping...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_CCCMA_CGCM31_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from CCCMA (also CGCM3.1), a third generation coupled global climate model created by the Canadian Centre for Climate Modeling and Analysis. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
The Geophysical Institute Permafrost Lab (GIPL) model was developed specifically to assess the effect of a changing climate on permafrost. The GIPL 1.0 model is a quasi-transitional, spatially distributed, equilibrium model for calculating the active layer thickness and mean annual ground temperature. The GIPL-1 model accounts effectively for the effects of snow cover, vegetation, soil moisture, and soil thermal properties. The GIPL-1 model allows for the calculation of maximum active layer thickness (ALT) and mean annual ground temperatures (MAGT) at the bottom of the active layer. The approach to determine the ALT and MAGT is based on an approximate analytical solution that includes freezing/thawing processes...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_CCCMA_CGCM31_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from CCCMA (also CGCM3.1), a third generation coupled global climate model created by the Canadian Centre for Climate Modeling and Analysis. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_CRU_Historical_annual_1930-1939.tif represents the decade spanning 1930-1939. The data were generated by using the Hamon equation and output from a statistically downscaled version of the Hadley Centre’s CRU TS3.0 observational dataset. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users are reminded that the PET estimates...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_CRU_Historical_annual_1930-1939.tif represents the decade spanning 1930-1939. The data were generated by using the Hamon equation and output from a statistically downscaled version of the Hadley Centre’s CRU TS3.0 observational dataset. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users are reminded that the PET estimates...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated mean annual ground temperature (MAGT) in Celsius, averaged across a decade, at the base of active layer or at the base of the seasonally frozen soil column. The file name specifies the decade the raster represents. For example, a file named MAGT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated mean annual ground temperature (degree C) at the base of the active layer (for areas with permafrost) or at the base of the soil column that is seasonally frozen (for areas without permafrost). If the value of the cell is negative,the area has permafrost and the...
The cascade of uncertainty that underscores climate impact assessments of regional hydrology undermines their value for long-term water resources planning and management. This study presents a statistical framework that quantifies and propagates the uncertainties of hydrologic model response through projections of future streamflow under climate change. Different sources of hydrologic model uncertainty are accounted for using Bayesian modeling. The distribution of model residuals is formally characterized to quantify predictive skill, and Markov chain Monte Carlo sampling is used to infer the posterior distributions of both hydrologic and error model parameters. Parameter and residual error uncertainties are integrated...


map background search result map search result map Stand Age Projections 2070-2079 Stand Age Projections 2010-2019 Mean Annual Ground Temperature 2000-2009 Active Layer Thickness 2090-2099 Mean Annual Ground Temperature 1990-1999 Potential Evapotranspiration 2060-2069: ECHAM5 - A1B Scenario Potential Evapotranspiration 1940-1949: CRU Historical Dataset Potential Evapotranspiration 1950-1959: CRU Historical Dataset Potential Evapotranspiration 1970-1979: CRU Historical Dataset Stand Age Projections 2050-2059 Historical Stand Age 1920-1929 Potential Evapotranspiration 2040-2049: CCCMA - A1B Scenario Historical Stand Age 1930-1939 Potential Evapotranspiration 2020-2029: CCCMA - A1B Scenario Historical Stand Age 1880-1889 Historical Stand Age 1970-1979 Potential Evapotranspiration 2000-2009: ECHAM5 - A1B Scenario Permafrost Characterization and Mapping for Northern Alaska Final Report Permafrost Characterization and Mapping for Northern Alaska Final Report Stand Age Projections 2070-2079 Stand Age Projections 2010-2019 Mean Annual Ground Temperature 2000-2009 Active Layer Thickness 2090-2099 Mean Annual Ground Temperature 1990-1999 Potential Evapotranspiration 2060-2069: ECHAM5 - A1B Scenario Potential Evapotranspiration 1940-1949: CRU Historical Dataset Potential Evapotranspiration 1950-1959: CRU Historical Dataset Potential Evapotranspiration 1970-1979: CRU Historical Dataset Stand Age Projections 2050-2059 Historical Stand Age 1920-1929 Potential Evapotranspiration 2040-2049: CCCMA - A1B Scenario Historical Stand Age 1930-1939 Potential Evapotranspiration 2020-2029: CCCMA - A1B Scenario Historical Stand Age 1880-1889 Historical Stand Age 1970-1979 Potential Evapotranspiration 2000-2009: ECHAM5 - A1B Scenario