Skip to main content
Advanced Search

Filters: Tags: LAS (X)

188 results (182ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset is comprised of three files containing northing, easting, and elevation ("XYZ") information for light detection and ranging (LiDAR) data representing beach topography and sonar data representing near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The point data is the same as that in LAS (industry-standard binary format for storing large point clouds) files that were used to create a digital elevation model (DEM) of the approximately 5.9 square kilometer (2.3 square mile) surveyed area. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019). Multi-beam sonar data were collected...
Log ASCII Standard (LAS) files of select scanned well logs from Idaho Geological Surveys publication DD-3: Historical Oil and Gas Data for Idaho database of exploration wells across the state. Logs curves converted to LAS files may include: Gamma, Caliper (cal), Resistivity, Spontaneous Potential (SP), Bulk Density, Neutron Porosity, and density porosity. Locations of boreholes, attributes, and PDFs of more than 700 Geophysical logs and other data can be downloaded or viewed at no cost via the Idaho Geological Surveys interactive Oil and Gas webmap.
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 1-meter (m; 3.28084 foot [ft]) cell size and was created from a LAS (industry-standard binary format for storing large point clouds) dataset of terrestrial light detection and ranging (LiDAR) data with an average point spacing of 0.137 m (0.45 ft). LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019). References: Huizinga, R.J. and Wagner, D.M., 2019, Erosion monitoring along selected bank locations of the Coosa River in Alabama using terrestrial light detection and ranging...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS (industry-standard binary format for storing large point clouds) dataset of terrestrial light detection and ranging (LiDAR) data representing the beach topography and sonar data representing the bathymetry to approximately 1.3 kilometers (0.8 miles) offshore. Average point spacing of the LAS files in the dataset are as follows: LiDAR, 0.137 m; multi-beam sonar, 1.029 m; single-beam sonar, 0.999 m. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and...
thumbnail
In 2013 the U.S. Geological Survey (USGS) drilled and logged a continuous core located on the northeast flank of the Alcova anticline in the southeastern part of the Wind River Basin, Wyoming to evaluate the source rock potential of the Lower and lowermost Upper Cretaceous marine shales (fig. 1). The well, named the Alcova Reservoir AR–1–13, was spud in the lower part of the Frontier Formation and ended in the upper part of the Cloverly Formation, and recovered core between 40.5 feet (ft) and 623 ft (figs. 1, 2). After coring was completed the USGS recorded geophysical data from the well bore, with digital data collected to a depth of 622 ft. Data include natural gamma, resistivity, conductivity, density, sonic,...
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.
Log ASCII Standard (LAS) files of select scanned well logs from Idaho Geological Surveys publication DD-3: Historical Oil and Gas Data for Idaho database of exploration wells across the state. Logs curves converted to LAS files may include: Gamma, Caliper (cal), Resistivity, Spontaneous Potential (SP), Bulk Density, Neutron Porosity, and density porosity. Locations of boreholes, attributes, and PDFs of more than 700 Geophysical logs and other data can be downloaded or viewed at no cost via the Idaho Geological Surveys interactive Oil and Gas webmap.
thumbnail
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information.


map background search result map search result map USGS Lidar Point Cloud FL Osceola 2015 LID2015 067090 E C LAS 2017 USGS Lidar Point Cloud FL Osceola 2015 LID2015 067398 E C LAS 2017 USGS Lidar Point Cloud FL Osceola 2015 LID2015 073993 E C LAS 2017 USGS Lidar Point Cloud FL Osceola 2015 LID2015 077597 E B LAS 2017 USGS Lidar Point Cloud IL Pike-ScottCo 2015 20261114 LAS 2017 USGS Lidar Point Cloud IL Pike-ScottCo 2015 20461104 LAS 2017 USGS Lidar Point Cloud IL Pike-ScottCo 2015 20801092 LAS 2017 USGS Lidar Point Cloud KY NRCS-Watersheds 2011 16 05114161 LAS 2016 USGS Lidar Point Cloud IL Pike-ScottCo 2015 22001106 LAS 2017 USGS Lidar Point Cloud LA SoTerrebonne-GI 2015 15RXN7047 LAS 2016 USGS Lidar Point Cloud IN WT-B12-Warrick 2013 in2013 28451020 12 LAS 2016 USGS Lidar Point Cloud IL District7-Coles 2014 1008 1070 LAS 2017 USGS Lidar Point Cloud IL District7-Coles 2014 956 1026 LAS 2017 USGS Lidar Point Cloud IL District7-Coles 2014 964 1052 LAS 2017 LAS digital data files for the U.S.Geological Survey Alcova AR-1-13 core hole, Natrona County, Wyoming Beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, August 2019 Digital elevation model (DEM) of beach topography of Lake Superior at Minnesota Point, Duluth, MN, August 2019 XYZ files of LiDAR and sonar data collected at Lake Superior at Minnesota Point, Duluth, MN, August 2019 Virgil Johnson No. 2 Tincup Mountain Federal No. 1 USGS Lidar Point Cloud IL District7-Coles 2014 956 1026 LAS 2017 USGS Lidar Point Cloud IL District7-Coles 2014 964 1052 LAS 2017 USGS Lidar Point Cloud IL District7-Coles 2014 1008 1070 LAS 2017 USGS Lidar Point Cloud IL Pike-ScottCo 2015 22001106 LAS 2017 USGS Lidar Point Cloud IL Pike-ScottCo 2015 20801092 LAS 2017 USGS Lidar Point Cloud IL Pike-ScottCo 2015 20461104 LAS 2017 USGS Lidar Point Cloud IL Pike-ScottCo 2015 20261114 LAS 2017 USGS Lidar Point Cloud FL Osceola 2015 LID2015 077597 E B LAS 2017 USGS Lidar Point Cloud FL Osceola 2015 LID2015 073993 E C LAS 2017 USGS Lidar Point Cloud FL Osceola 2015 LID2015 067398 E C LAS 2017 USGS Lidar Point Cloud FL Osceola 2015 LID2015 067090 E C LAS 2017 USGS Lidar Point Cloud LA SoTerrebonne-GI 2015 15RXN7047 LAS 2016 USGS Lidar Point Cloud KY NRCS-Watersheds 2011 16 05114161 LAS 2016 USGS Lidar Point Cloud IN WT-B12-Warrick 2013 in2013 28451020 12 LAS 2016 Digital elevation model (DEM) of beach topography of Lake Superior at Minnesota Point, Duluth, MN, August 2019 XYZ files of LiDAR and sonar data collected at Lake Superior at Minnesota Point, Duluth, MN, August 2019 Beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, August 2019 LAS digital data files for the U.S.Geological Survey Alcova AR-1-13 core hole, Natrona County, Wyoming