Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: LCC Science Catalog (X)

70 results (32ms)   

Date Range
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Hawaiʻi is considered a worldwide biodiversity hotspot, with nearly 90 percent of its native plants found nowhere else in the world. However, about half of these native plants are imperiled by threats including human development, non-native species, and climate change. Through this project, scientists modeled the relative vulnerability of over 1,000 native plant species to the effects of climate change. A panel of experts in Hawaiian plant species assisted with the development of the model and verified its results. From the model, researchers were able to develop a vulnerability score for each plant species and identify categories of species with high, medium, and low vulnerability to climate change. This information...
Although climate change is predicted to place mountain-top and other narrowly endemic species at severe risk of extinction, the ecological processes involved in such extinctions are still poorly resolved. In addition, much of this biodiversity loss will likely go unobserved, and therefore largely unappreciated. The Haleakalā silversword is restricted to a single volcano summit in Hawai‘i, but is a highly charismatic giant rosette plant that is viewed by 1–2 million visitors annually. We link detailed local climate data to a lengthy demographic record, and combine both with a population-wide assessment of recent plant mortality and recruitment, to show that after decades of strong recovery following successful management,...
Responses of Hawaiian Albatrosses to Environmental Change Data outputs and metadata
Current and year 2100 (SRES A1B) climate envelopes for all native species datasets for “A landscape-based assessment of climate change vulnerability for native Hawaiian plants”.
Categories: Data; Tags: LCC Science Catalog, completed, Data
A Brochure describing the Climate Change and Invasive Species Impacts on Watersheds WDST
Facilitating Adaptation in Montane Plants to Changing Precipitation along an Elevation Gradient Symposium Poster
Future Distribution of Cloud Forests and Associated Species in Hawaii Final Report
Point Blue Final Report Climate Change Monitoring Workshop Summary and Report
Transmission of avian malaria in the Hawaiian Islands varies across altitudinal gradients and is greatest at elevations below 1500 m where both temperature and moisture are favorable for the sole mosquito vector, Culex quinquefasciatus, and extrinsic sporogonic development of the parasite, Plasmodium relictum. Potential consequences of global warming on this system have been recognized for over a decade with concerns that increases in mean temperatures could lead to expansion of malaria into habitats where cool temperatures currently limit transmission to highly susceptible endemic forest birds. Recent declines in two endangered species on the island of Kaua’i, the ‘Akikiki (Oreomystis bairdi) and ‘Akeke’e (Loxops...
This final report summarizes the project’s major accomplishments in research, training and product development. We have accomplished our primary goals of this project. With our research we contribute significant new information to the monitoring and assessment of ongoing climatic changes in Hawai‘i. Over the last decades the general trends in the wet season rainfall was negative and given the modeled climate scenarios from CMIP3 and CMIP5, it is very likely these trends are going to continue in the 21st century. In this research project, we improved the spatial information content of our statistical downscaling method through the introduction of the Rainfall Atlas of Hawai‘i station data sets and the use of improved...
Increased water levels, erosion, salinity, and flooding associated with sea-level rise threaten coastal and wetland habitats of endangered waterbirds, sea turtles, monk seals, and migratory shorebirds. As sea-level rises the greatest challenge will be prioritizing management actions in response to impacts. We provide decision makers with two solutions to adaptively manage the impacts of SLR and apply these methods to three coastal wetland environments at Keālia National Wildlife Refuge (south Maui), Kanaha State Wildlife Sanctuary (north Maui), and James Campbell National Wildlife Refuge (north O‘ahu). Firstly, due to the low gradient of most coastal plain environments, the rate of SLR impact will rapidly accelerate...
For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21%...
Since the beginning of the industrial revolution, the concentration of atmospheric CO2 has been rising due to the burning of fossil fuels. increased absorption of this CO2 by the oceans is lowering the seawater pH and aragonite saturation state (Ωar). This process is known as ocean acidification (OA). numerous studies have shown a direct correlation between declining ocean pH, declining Ωar, and declining coral growth, but the mechanism is not understood. Various experiments designed to evaluate the relative importance of pH, CO3 2–, Ωar, HCO3 –, aqueous CO2, total alkalinity, and total inorganic carbon (Ct) to coral calcification have led to opposing conclusions. A reanalysis of existing data suggests that the...
Climate change is anticipated to affect freshwater resources, but baseline data on the functioning of tropical watersheds is lacking, limiting efforts that seek to predict how watershed processes, water supply, and streamflow respond to anticipated changes in climate and vegetation change, and to management. To address this data gap, we applied the distributed hydrology soil vegetation model (DHSVM) across 88 watersheds spanning a highly constrained, 4500 mm mean annual rainfall (MAR) gradient on Hawai‘i Island to quantify stream flow at 3-h time-steps for eight years in response to the independent and interactive effects of (1) large observed decrease in MAR; (2) projected warming and altered precipitation; and...
Publication titled “​Statistical downscaling of rainfall changes in Hawai‘i based on the CMIP5 global model projections”
A landscape-based assessment of climate change vulnerability for all native Hawaiian plants table with all vulnerability scores and associated data for all species
A landscape-based assessment of climate change vulnerability for all native Hawaiian plants Handout

map background search result map search result map Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants