Skip to main content
Advanced Search

Filters: Tags: Lacustrine (X) > Categories: Publication (X)

5 results (11ms)   

View Results as: JSON ATOM CSV
thumbnail
A previously unidentified major sequence boundary within the Eocene Green River Formation separates fluctuating profundal facies of the Tipton Shale Member from evaporative facies of the Wilkins Peak Member. During deposition of the Tipton Shale Member, rivers entered the basin from the north, across the subdued Wind River Mountains, and deposited the southward prograding deltaic complex of the Farson Sandstone Member. Boulder-rich alluvial fan deposits overlie the Farson Sandstone adjacent to the Continental Fault, and correlate basinward to hypersaline lacustrine deposits of the Wilkins Peak Member. The alluvial fan deposits record a period of reverse motion on the Continental Fault and uplift of the southeastern...
Complex, caddisfly-dominated (Insecta: Trichoptera) carbonate mounds up to 9 m tall and 40 m in diameter formed in the nearshore environment of Eocene Lake Gosiute. The mounds outcrop for 70 km in reef-like geometries along the northern margin of Lake Gosiute in Wyoming. The relationships among the caddisfly larvae, the benthic microbial mat and physicochemical nearshore processes of Eocene Lake Gosiute resulted in unique external and internal carbonate mound morphology. Externally, the large carbonate mounds are formed by the lateral and vertical coalescence of several layers of smaller columns. The smaller columns are generally 1?2 m tall and are 0.5?1 m in diameter. Each layer or generation of smaller columns...
A quarry within the Cedar Mountain Formation in Mussentuchit Wash, Emery County, Utah, produced a fossil assemblage containing the remains of at least eight juvenile iguanodontid dinosaurs (Eolambia caroljonesa). The Cedar Mountain Formation lies stratigraphically between the Tithonian?Berriasian (Upper Jurassic) Brushy Basin Member of the Morrison Formation and the Cenomanian (Upper Cretaceous) Dakota Formation. Detailed stratigraphic, sedimentological, geochronological, palynological, and paleontological data have been collected along a measured section at the site of the Cifelli #2 Eolambia caroljonesa Quarry. These data provide a chronostratigraphic and a biostratigraphic framework for the Cedar Mountain Formation...
thumbnail
The deposits of Eocene Lake Gosiute that constitute the Green River Formation of Wyoming contain numerous tuff beds that represent isochronous, correlatable stratigraphic markers. Tuff beds selected for 40Ar/39Ar analysis occur within laminated mudstone, are matrix supported, and lack evidence of reworking. These tuffs contain 2%?15% euhedral phenocrysts of quartz, plagioclase, sanidine, biotite, and minor amphibole, pyroxene, and zircon, encased in a matrix of altered glassy ash. Air abrasion and handpicking under refractive- index oils were required to obtain clean, unaltered phenocrysts of sanidine. 40Ar/39Ar age determinations from single-crystal and <1 mg multigrain aliquots of sanidine and biotite allowed...
We reevaluate the Eocene geomagnetic polarity time scale on the basis of single-crystal 40Ar/39Ar ages for air-fall tuffs from the Wilkins Peak Member of the Green River Formation of Wyoming. Tuff 6 is dated as 49.1 � 0.2 Ma, and tuff 3 is dated as 50.4 � 0.3 Ma (maximum estimate). When combined with published magnetostratigraphic constraints, these age determinations suggest that the currently accepted age of chron C22r is 1.5?2.5 m.y. too old, which supports a significantly longer duration for the early Eocene, for the early Eocene climatic optimum, and the Wasatchian North American Land Mammal Age. Published in Geology, volume 32, issue 2, on pages 137 - 137, in 2004.


    map background search result map search result map Lake basin response to tectonic drainage diversion: Eocene Green River Formation, Wyoming 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming Lake basin response to tectonic drainage diversion: Eocene Green River Formation, Wyoming