Skip to main content
Advanced Search

Filters: Tags: Lake Superior (X) > Extensions: Shapefile (X)

26 results (52ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset is the survey area footprint for the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The survey footprint represents a LAS dataset of terrestrial light detection and ranging (lidar) of beach topography and multibeam sonar bathymetry to approximately 1 kilometer (0.62 miles) offshore, for an approximately 2.27 square kilometer surveyed area. The surveys were completed July 20 - July 23, 2020.
thumbnail
This dataset is a LAS dataset containing light detection and ranging (lidar) data and sonar data representing the beach and near-shore topography of Minnesota Point near the Superior Entry of Lake Superior, Duluth, Minnesota. The LAS data sets were used to create a digital elevation model (DEM) of the approximately 2.27 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne unit. Multibeam sonar data were collected using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Single-beam sonar data were collected using a Ceescope sonar unit. All elevation data were collected September 15-17, 2021. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M.,...
thumbnail
This dataset is a LAS (industry-standard binary format for storing lidar point clouds) dataset containing light detection and ranging (lidar) data and sonar data representing the beach and near-shore topography of Lake Superior at Minnesota Point, near the Duluth entry, Duluth, Minnesota. Average point spacing of the LAS files in the dataset are as follows: lidar, 0.094 meters (m); multibeam sonar, 0.501 m; single-beam sonar, 1.876 m. The LAS dataset was used to create digital elevation models (DEMs) of 10 m (32.8084 feet) and 1 m (3.28084 feet) resolution, of the approximate 1.75 square kilometer surveyed area. Lidar data were collected August 22, 2022 using a boat mounted Velodyne VLP-16 unit and methodology similar...
thumbnail
In September 2018, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches. Stamp sands are also encroaching onto Buffalo Reef, a large...
thumbnail
This dataset is a LAS dataset containing light detection and ranging (lidar) data and multibeam sonar data representing the beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The LAS data were used to create a digital elevation model (DEM) of the approximate 1.87 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne VLP-16 unit. Multibeam sonar data were collected using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Single-beam sonar data were collected using a Ceescope sonar unit. All elevation data were collected October 5-11, 2021. Methodology similar to Wagner, D.M., Lund, J.W.,...
thumbnail
This dataset is a LAS (industry-standard binary format for storing lidar point clouds) dataset containing light detection and ranging (lidar) data and sonar data representing the beach and near-shore bathymetry of Lake Superior at Minnesota Point, near the Duluth entry, Duluth, Minnesota. Average point spacing of the LAS files in the dataset are as follows: lidar, 0.055 meters (m); multibeam sonar, 0.511 m; single-beam sonar, 1.687 m. The LAS dataset was used to create digital elevation models (DEMs) of 10 m (32.8084 feet) and 1 m (3.28084 feet) cell size, of the approximate 1.78 square kilometer surveyed area. Lidar data were collected November 01, 2022 using a boat mounted Velodyne VLP-16 unit and methodology...
thumbnail
In September 2018, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches. Stamp sands are also encroaching onto Buffalo Reef, a large...
thumbnail
In August 2021, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, collected high-resolution geophysical data, sediment samples, and bottom imagery to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches. Stamp sands are also encroaching onto Buffalo Reef,...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buffalo Reef, CMHRP, Coastal and Marine Hazards and Resources Program, DOI, Department of the Interior, All tags...
thumbnail
In September 2018, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches. Stamp sands are also encroaching onto Buffalo Reef, a large...
thumbnail
The elevation contours in this dataset have a 2-foot (ft) interval and were derived from a digital elevation model (DEM) of beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and single-beam and multibeam sonar data representing the bathymetry. The survey area extended approximately 0.85 kilometers (0.5 miles) offshore, for an approximate 1.87 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne VLP-16 unit. Multibeam sonar data were collected...
thumbnail
The elevation contours in this dataset have a 2-foot (ft) interval and were derived from a digital elevation model (DEM) of beach topography and nearshore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 1 meter (m; 3.28084 ft) cell size and was created from Lidar data representing beach topography and sonar data representing bathymetry extending approximately 700-800 m offshore. The data cover an approximately 1.75 square kilometer survey area. Lidar data were collected November 01, 2022 using a boat mounted Velodyne VLP-16 unit and methodology similar to that described by Huizinga and Wagner (2019). Multibeam sonar data were collected October 31-November 01, 2022 using a Norbit...
thumbnail
This dataset represents the survey footprint of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar and multibeam data were collected September 22-23, 2020.
thumbnail
The elevation contours in this dataset have a 2-foot (ft) interval and were derived from a digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth entry, Duluth, Minnesota. The DEM has a 5-meter (m; 16.404 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extended approximately 0.85 kilometer (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23,...
thumbnail
In August 2021, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, collected high-resolution geophysical data, sediment samples, and bottom imagery to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches. Stamp sands are also encroaching onto Buffalo Reef,...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buffalo Reef, CMHRP, CSV, Coastal and Marine Hazards and Resources Program, DOI, All tags...
thumbnail
This dataset represents the survey footprint of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar and multibeam data were collected July 28-29, 2020.
thumbnail
In September 2018, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches. Stamp sands are also encroaching onto Buffalo Reef, a large...
thumbnail
The elevation contours in this dataset have a 2-foot (ft) interval and were derived from a digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography and multibeam sonar data representing the bathymetry to approximately 1 kilometer (0.62 miles) offshore, for an approximately 2.27 square kilometer surveyed area. Lidar data were collected July 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected July 20th and 23rd, 2020 using a Norbit integrated...
thumbnail
The elevation contours in this dataset have a 2-foot (ft) interval and were derived from a digital elevation model (DEM) of beach topography and near-shore bathymetry of Minnesota Point near the Superior Entry of Lake Superior, Duluth, Minnesota. The DEM used to derive the contours has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography and sonar data representing the bathymetry to approximately 1 kilometer (0.62 miles) offshore, for an approximately 2.27 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne unit. Multibeam sonar data were collected using a Norbit integrated...
This dataset consists of 176 wideband magnetotelluric (MT) stations collected from 2015-2019 across parts of Minnesota, Wisconsin and the Upper Peninsula of Michigan. The U.S. Geological Survey (USGS) acquired these data as part of regional investigations into the geologic and tectonic framework of the area and to support mineral resource investigations. These data have been used to generate a 3D regional conductivity model of the area. Files included in this publication include measured electric- and magnetic-field time series as well as estimated impedance and vertical-magnetic field transfer functions.
thumbnail
This dataset is a LAS dataset containing light detection and ranging (lidar) data and multibeam sonar data representing the beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The LAS dataset used to create a digital elevation model (DEM) of the approximate 1.87 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne VLP-16 unit. Multibeam sonar data were collected using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Single-beam sonar data were collected using a Ceescope sonar unit. All elevation data were collected June 22-24, 2021. Methodology similar to Wagner, D.M., Lund, J.W., and...


map background search result map search result map Seismic Reflection, Boomer tracklines collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior, during USGS field activity 2018-043-FA, (Esri polyline shapefile, GCS WGS 84) Seismic Reflection, EdgeTech SB-424 Chirp tracklines collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS field activity 2018-043-FA, (Esri polyline shapefile, GCS WGS 84) Multibeam bathymetric trackline data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA using a dual-head Reson T20-P multibeam echosounder (Esri polyline shapefile, Geographic, WGS 84) Seismic Reflection, Boomer shot points collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior, during USGS field activity 2018-043-FA, (CSV text and Esri point shapefile, GCS WGS 84) Magnetotelluric data from Minnesota, Wisconsin, and Upper Michigan, 2015-2019 Duluth Entry: Survey area of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, July 2020 Minnesota Point: Elevation contours of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, July 2020 Minnesota Point: Survey area of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, July 2020 Duluth Entry: 2-foot Elevation contours of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Duluth Entry: Survey area of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Multibeam trackline data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using a dual-head Reson T20-P multibeam echosounder (Esri polyline shapefile, Geographic, WGS 84) Geotagged lakebed images and their locations collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using the USGS MiniSEABOSS (JPEG images, point shapefile; GCS WGS 84) Elevation contours of beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, June 2021 LAS dataset of lidar, single-beam, and multibeam data collected at Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, June 2021 LAS dataset of lidar, single-beam, and multibeam sonar data collected of Minnesota Point near the Superior Entry of Lake Superior, Duluth, MN, September 2021 Elevation contours of beach topography and near-shore bathymetry of Minnesota Point, near the Superior Entry of Lake Superior, Duluth, MN, September, 2021 LAS dataset of lidar, single-beam, and multibeam data collected of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, October 2021 LAS dataset of lidar, single-beam and multibeam sonar data collected at Lake Superior at Minnesota Point near the Duluth Entry, Duluth, MN, August 2022 LAS dataset of lidar, single-beam, and multibeam sonar data collected at Lake Superior at Minnesota Point near the Duluth Entry, Duluth, MN, October-November 2022 Elevation contours of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point near the Duluth Entry, Duluth, MN, October-November 2022 LAS dataset of lidar, single-beam, and multibeam sonar data collected at Lake Superior at Minnesota Point near the Duluth Entry, Duluth, MN, October-November 2022 Elevation contours of beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, June 2021 Duluth Entry: 2-foot Elevation contours of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 LAS dataset of lidar, single-beam and multibeam sonar data collected at Lake Superior at Minnesota Point near the Duluth Entry, Duluth, MN, August 2022 Duluth Entry: Survey area of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, July 2020 Duluth Entry: Survey area of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 LAS dataset of lidar, single-beam, and multibeam data collected at Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, June 2021 LAS dataset of lidar, single-beam, and multibeam data collected of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, October 2021 Elevation contours of beach topography and near-shore bathymetry of Minnesota Point, near the Superior Entry of Lake Superior, Duluth, MN, September, 2021 Minnesota Point: Elevation contours of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, July 2020 Minnesota Point: Survey area of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, July 2020 LAS dataset of lidar, single-beam, and multibeam sonar data collected of Minnesota Point near the Superior Entry of Lake Superior, Duluth, MN, September 2021 Geotagged lakebed images and their locations collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using the USGS MiniSEABOSS (JPEG images, point shapefile; GCS WGS 84) Multibeam trackline data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using a dual-head Reson T20-P multibeam echosounder (Esri polyline shapefile, Geographic, WGS 84) Seismic Reflection, EdgeTech SB-424 Chirp tracklines collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS field activity 2018-043-FA, (Esri polyline shapefile, GCS WGS 84) Seismic Reflection, Boomer shot points collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior, during USGS field activity 2018-043-FA, (CSV text and Esri point shapefile, GCS WGS 84) Seismic Reflection, Boomer tracklines collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior, during USGS field activity 2018-043-FA, (Esri polyline shapefile, GCS WGS 84) Multibeam bathymetric trackline data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA using a dual-head Reson T20-P multibeam echosounder (Esri polyline shapefile, Geographic, WGS 84) Magnetotelluric data from Minnesota, Wisconsin, and Upper Michigan, 2015-2019