Skip to main content
Advanced Search

Filters: Tags: Landsat (X) > partyWithName: U.S. Geological Survey (X)

90 results (11ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
A validation assessment of Land Cover Monitoring, Assessment, and Projection Collection 1.1 annual land cover products (1985–2019) for the Conterminous United States was conducted with an independently collected reference data set. Reference data land cover attributes were assigned by trained interpreters for each year of the time series (1984–2018) to a reference sample of 24,971 randomly-selected Landsat resolution (30m x 30m) pixels. The interpreted land cover attributes were crosswalked to the LCMAP annual land cover classes: Developed, Cropland, Grass/Shrub, Tree Cover, Wetland, Water, Snow/Ice and Barren. Validation analysis directly compared reference labels with annual LCMAP land cover map attributes by...
thumbnail
The U.S. Geological Survey (USGS) has developed and implemented an algorithm that identifies burned areas in dense time series of Landsat image stacks to produce the Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm makes use of predictors derived from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference conditions. Outputs of the BAECV algorithm consist of pixel-level burn probabilities for each Landsat scene, and annual burn probability, burn classification, and burn date composites. These products were generated for the conterminous United States for 1984 through 2015. These data are also available for download at https://rmgsc.cr.usgs.gov/outgoing/baecv/BAECV_CONUS_v1.1_2017/...
thumbnail
The LCMAP Intensification Reference Data Product was utilized for evaluation and validation of the Land Change Monitoring, Assessment, and Projection (LCMAP) land cover and land cover change products. The LCMAP Intensification Reference Data Product includes the collection of an independent dataset of 2,000 30-meter by 30-meter plots selected via stratified random sampling across the conterminous United States (CONUS). This dataset was collected via manual image interpretation to aid in validation of the land cover and land cover change products as well as area estimates. The LCMAP Intensification Reference Data Product collected variables related to primary and secondary land use, primary and secondary land cover(s),...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
thumbnail
These data products are preliminary burn severity assessments derived from data obtained from suitable imagery (including Landsat TM, Landsat ETM+, Landsat OLI, Sentinel 2A, and Sentinel 2B). The pre-fire and post-fire subsets included were used to create a differenced Normalized Burn Ratio (dNBR) image. The dNBR image attempts to portray the variation of burn severity within a fire. The severity ratings are influenced by the effects to the canopy. The severity rating is based upon a composite of the severity to the understory (grass, shrub layers), midstory trees and overstory trees. Because there is often a strong correlation between canopy consumption and soil effects, this algorithm works in many cases for Burned...
thumbnail
This product ("Prairie fires") presents burned area boundaries for The Flint Hills Ecoregion (KS and OK), one of the most fire prone ecosystems in the United States where hundreds of thousands of acres burn annually as prescribed fire and wildfire. The prairie fire products provide the extent of larger prairie fires in the Flint Hills to record the occurrence of fire and can be used to identify individual burned areas within the perimeters. This product is published to provide fire information of the most fire prone ecosystems to individuals and land management communities for assessing burn extent and impacts on a time sensitive basis. The methods used to produce the prairie fire products from 2019 to present are...
thumbnail
This map layer is a vector polygon shapefile of the perimeters of all currently inventoried fires occurring between calendar year 2021 and 2021 that do not meet standard MTBS size criteria. These data are published to augment the data that are available from the MTBS program. This product was produced using the methods of the Monitoring Trends in Burn Severity Program (MTBS); however, these fires do not meet the size criteria for a standard MTBS assessment. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. MTBS typically...
thumbnail
The U. S. Fish and Wildlife Service (FWS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. These data products are burned area boundary shapefiles derived from post-fire sensor data (including Landsat TM, Landsat ETM+, Landsat OLI). The pre-fire and post-fire subsets included were used to create Normalized Burn Ratio (NBR) and then a differenced Normalized Burn Ratio (dNBR) image. The objective of this assessment was to generate burned area boundaries for each fire. Data bundles also include post-fire subset, pre-fire subset, NBR, and dNBR images. This map layer is a thematic raster...
thumbnail
To determine if invasive annual grasses increased around energy developments after the construction phase, we calculated an invasives index using Landsat TM and ETM+ imagery for a 34-year time period (1985-2018) and assessed trends for 1,755 wind turbines (from the U.S. Wind Turbine Database) installed between 1988 and 2013 in the southern California desert. The index uses the maximum normalized difference vegetation index (NDVI) for early season greenness (January-June), and mean NDVI (July-October) for the later dry season. We estimated the relative cover of invasive annuals each year at turbine locations and control sites and tested for changes before and after each turbine was installed. These data were used...
thumbnail
This data release is comprised of tidal marsh biomass data and spatial predictions of peak biomass and Julian day of peak biomass using data from the Landsat archive. Aboveground biomass dry weight of mixed-species plots (25x50 cm) at a tidal marsh in Willapa Bay, Washington were used to establish a relationship between biomass and tasseled cap greeness (TCG). The julian day of annual peak greenness and the value of annual peak greenness for 32 years at Bandon National Wildlife Refuge (NWR), Grays Harbor NWR, and Nisqually NWR was calculated by fitting a Gaussian function to the TCG values for a given year. The value of each 30 meter pixel is the Julian day of maximum predicted TCG or the maximum predicted TCG....
thumbnail
These data can be used in a geographic information system (GIS) for any number of purposes such as assessing wildlife habitat, water quality, pesticide runoff, land use change, etc. The State data sets are provided with a 300 meter buffer beyond the State border to faciliate combining the State files into larger regions. The user must have a firm understanding of how the datasets were compiled and the resulting limitations of these data. The National Land Cover Dataset was compiled from Landsat satellite TM imagery (circa 1992) with a spatial resolution of 30 meters and supplemented by various ancillary data (where available). The analysis and interpretation of the satellite imagery was conducted using very large,...
thumbnail
This is a collection of data tables supporting the LCMAP CONUS Geographic Assessment v1.0. The data used to generate these tables come from the USGS LCMAP reference dataset and the map products released by LCMAP. Tables include annual land cover class composition and annual rate of land cover change metrics developed with a post-stratified estimator. Other tables including annual gross change of specific types of land covers, cumulative metrics of overall geographic footprint of change, frequency of overall geographic footprint of change, overall area estimates of specific class changes, and all unique changes in land cover classes. All tables cover the time period 1985-2016. All values in these tables are presented...
thumbnail
Rangelands have immense inherent spatial and temporal variability, yet assessments of land condition and trends are often assessed relative to the condition of a limited number of representative points. Ecological Potential (EP) data are spatially comprehensive, quantitative, and needed as a baseline for comparison of current rangeland vegetation conditions, trends, and management targets. We define EP as the potential fractional cover of vegetation components bare ground, herbaceous, litter, shrub, and sagebrush represented in the least disturbed and most productive portion of the western U.S. This dataset enables: 1) setting realistic expectations for restoration and management targets at 30-meter resolution,...
thumbnail
Understanding how different crops use water over time is essential for planning and managing water allocation, water rights, and agricultural production. The main objective of this paper is to characterize the spatiotemporal dynamics of crop water use in the Central Valley of California using Landsat-based annual actual evapotranspiration (ETa) from 2008-2018 derived from the Operational Simplified Surface Energy Balance (SSEBop) model. Crop water use for ten crops are characterized at multiple scales. The Mann-Kendall trend analysis revealed a significant increase in area cultivated with almonds and their water use, with an annual rate of change of 16,327 hectares in area and 13,488 ha-m in water use. Conversely,...
thumbnail
The U. S. Fish and Wildlife Service (FWS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. These data products are burned area boundary shapefiles derived from post-fire sensor data (including Landsat TM, Landsat ETM+, Landsat OLI). The pre-fire and post-fire subsets included were used to create Normalized Burn Ratio (NBR) and then a differenced Normalized Burn Ratio (dNBR) image. The objective of this assessment was to generate burned area boundaries for each fire. Data bundles also include post-fire subset, pre-fire subset, NBR, and dNBR images. This map layer is a thematic raster...
thumbnail
The U. S. Fish and Wildlife Service (FWS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. These data products are burned area boundary shapefiles derived from post-fire sensor data (including Landsat TM, Landsat ETM+, Landsat OLI). The pre-fire and post-fire subsets included were used to create Normalized Burn Ratio (NBR) and then a differenced Normalized Burn Ratio (dNBR) image. The objective of this assessment was to generate burned area boundaries for each fire. Data bundles also include post-fire subset, pre-fire subset, NBR, and dNBR images. This map layer is a thematic raster...
thumbnail
The U. S. Fish and Wildlife Service (FWS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. These data products are burned area boundary shapefiles derived from post-fire sensor data (including Landsat TM, Landsat ETM+, Landsat OLI). The pre-fire and post-fire subsets included were used to create Normalized Burn Ratio (NBR) and then a differenced Normalized Burn Ratio (dNBR) image. The objective of this assessment was to generate burned area boundaries for each fire. Data bundles also include post-fire subset, pre-fire subset, NBR, and dNBR images. This map layer is a thematic raster...
thumbnail
This data release comprises the raster data files and code necessary to perform all analyses presented in the associated publication. The 16 TIF raster data files are classified surface water maps created using the Dynamic Surface Water Extent (DSWE) model implemented in Google Earth Engine using published technical documents. The 16 tiles cover the country of Cambodia, a flood-prone country in Southeast Asia lacking a comprehensive stream gauging network. Each file includes 372 bands. Bands represent surface water for each month from 1988 to 2018, and are stacked from oldest (Band 1 - January 1988) to newest (Band 372 - December 2018). DSWE classifies pixels unobscured by cloud, cloud shadow, or snow into five...
A validation assessment of Land Cover Monitoring, Assessment, and Projection annual land cover products (2000–2019) for Hawaii was conducted with an independently collected reference data set. Reference data land cover attributes were assigned by trained interpreters for each year of the time series (2000–2019) to a stratified random reference sample of 600 Landsat resolution (30m x 30m) pixels. The LCMAP and reference dataset labels for each pixel location are recorded for each year, 2000–2019.
thumbnail
The U.S. Geological Survey (USGS) has developed and implemented an algorithm that identifies burned areas in temporally dense time series of Landsat Analysis Ready Data (ARD) scenes to produce the Landsat Burned Area Products. The algorithm uses predictors derived from individual ARD Landsat scenes, lagged reference conditions, and change metrics between the scene and reference conditions. Scene-level products include pixel-level burn probability (BP) and burn classification (BC) images corresponding to each Landsat image in the ARD time series. Annual composite products are also available by summarizing the scene-level products. Prior to generating annual composites, individual scenes that had > 0.010 burned proportion...


map background search result map search result map National Land Cover Data Set 1992 for Wyoming 30 meter Landsat Burned Area Essential Climate Variable products for the conterminous United States (1984 - 2015) Data for climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes Crop Water Use in the Central Valley of California using Landsat-derived evapotranspiration Data supporting Landsat time series assessment of invasive annual grasses following energy development Implementation of a Surface Water Extent Model using Cloud-Based Remote Sensing - Code and Maps Ecological Potential Fractional Component Cover Based on Long-Term Satellite Observations Across the Western United States LCMAP CONUS Geographic Assessment Data Tables v1.0 1985-2016 Monitoring Trends in Burn Severity Thematic Burn Severity Mosaic for 2021 (ver. 5.0, August 2023) The Landsat Collection 2 Burned Area Products for the conterminous United States (ver. 2.0, April 2024) Burned Area Reflectance Classification Thematic Burn Severity Mosaic for 2023 (ver. 6.0, January 2024) Prairie Fire Assessment of Fire Occurrence Dataset (FOD) points location (ver. 6.0, January 2024) Undersized Fire Mapping Program Burned Area Boundaries (ver. 5.0, October 2023) US Fish and Wildlife Service Fire Atlas- Burn Severity Mosaic for CONUS in 1985 (ver. 6.0, January 2024) US Fish and Wildlife Service Fire Atlas- Burn Severity Mosaic for CONUS in 1992 (ver. 6.0, January 2024) US Fish and Wildlife Service Fire Atlas- Burn Severity Mosaic for CONUS in 1993 (ver. 6.0, January 2024) US Fish and Wildlife Service Fire Atlas- Burn Severity Mosaic for CONUS in 1995 (ver. 6.0, January 2024) Data for climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes Data supporting Landsat time series assessment of invasive annual grasses following energy development Implementation of a Surface Water Extent Model using Cloud-Based Remote Sensing - Code and Maps National Land Cover Data Set 1992 for Wyoming 30 meter Crop Water Use in the Central Valley of California using Landsat-derived evapotranspiration US Fish and Wildlife Service Fire Atlas- Burn Severity Mosaic for CONUS in 1992 (ver. 6.0, January 2024) US Fish and Wildlife Service Fire Atlas- Burn Severity Mosaic for CONUS in 1985 (ver. 6.0, January 2024) US Fish and Wildlife Service Fire Atlas- Burn Severity Mosaic for CONUS in 1995 (ver. 6.0, January 2024) US Fish and Wildlife Service Fire Atlas- Burn Severity Mosaic for CONUS in 1993 (ver. 6.0, January 2024) Ecological Potential Fractional Component Cover Based on Long-Term Satellite Observations Across the Western United States Monitoring Trends in Burn Severity Thematic Burn Severity Mosaic for 2021 (ver. 5.0, August 2023) LCMAP CONUS Geographic Assessment Data Tables v1.0 1985-2016 The Landsat Collection 2 Burned Area Products for the conterminous United States (ver. 2.0, April 2024) Burned Area Reflectance Classification Thematic Burn Severity Mosaic for 2023 (ver. 6.0, January 2024) Landsat Burned Area Essential Climate Variable products for the conterminous United States (1984 - 2015) Prairie Fire Assessment of Fire Occurrence Dataset (FOD) points location (ver. 6.0, January 2024) Undersized Fire Mapping Program Burned Area Boundaries (ver. 5.0, October 2023)