Skip to main content
Advanced Search

Filters: Tags: Linear Regression Rate (X)

84 results (29ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms. Shoreline positions were compiled prior to and following Hurricane Irma along the sandy shorelines of the Gulf of Mexico and Atlantic...
thumbnail
During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms. Shoreline positions were compiled prior to and following Hurricane Irma along the sandy shorelines of the Gulf of Mexico and Atlantic...
thumbnail
Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected in 2010...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms. Shoreline positions were compiled prior to and following Hurricane Irma along the sandy shorelines of the Gulf of Mexico and Atlantic...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
This data set displays intersection points used to compute rate of change statistics for New York State coastal wetlands. Analysis was performed in ArcMap 10.5.1 using historical vector shoreline data from the National Oceanic and Atmospheric Administration (NOAA). Rate of change statistics were calculated using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0. End-point rates, calculated by dividing the distance of shoreline movement by the time elapsed between the oldest and the most recent shoreline, were generated for wetlands where fewer than three historic shorelines were available. Linear regression rates, determined by fitting a least-squares regression line to...
thumbnail
During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms. Shoreline positions were compiled prior to and following Hurricane Irma along the sandy shorelines of the Gulf of Mexico and Atlantic...


map background search result map search result map Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Mississippi Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Florida west (FLwest) Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Georgia (GA) Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for South Carolina (SC) Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for northeastern Florida (FLne) Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for central North Carolina (NCcentral) Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for northern North Carolina (NCnorth) Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for southern North Carolina (NCsouth) Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for western North Carolina (NCwest) Intersection points used to calculate rate of shoreline change statistics for New York State coastal wetlands Long-term and short-term shoreline change rates for Martha's Vineyard, Massachusetts calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.0 Long-term and short-term shoreline change rates for the Buzzards Bay coastal region in Massachusetts calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.0 Long-term and short-term shoreline change rates for the region of Nantucket, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Short-term shoreline change rates for the Florida west coast (FLwc) coastal region using the Digital Shoreline Analysis System version 5 Short-term shoreline change rates for the Georgia coastal region using the Digital Shoreline Analysis System version 5 Bias Feature for the Florida west coast (FLwc) coastal region containing proxy-datum bias information to be used in the Digital Shoreline Analysis System version 5 Bias Feature for the Florida east coast (FLec) coastal region containing proxy-datum bias information to be used in the Digital Shoreline Analysis System version 5 VA Bias_Feature – Feature class containing Virginia proxy-datum bias information to be used in the Digital Shoreline Analysis System. Long-term shoreline change rates for the Central California coastal region using the Digital Shoreline Analysis System version 5.0 Long-term shoreline change rates for the Northern California coastal region using the Digital Shoreline Analysis System version 5.0 Long-term and short-term shoreline change rates for the region of Nantucket, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for Martha's Vineyard, Massachusetts calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.0 Long-term and short-term shoreline change rates for the Buzzards Bay coastal region in Massachusetts calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.0 Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for northern North Carolina (NCnorth) Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for central North Carolina (NCcentral) Short-term shoreline change rates for the Georgia coastal region using the Digital Shoreline Analysis System version 5 Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for southern North Carolina (NCsouth) VA Bias_Feature – Feature class containing Virginia proxy-datum bias information to be used in the Digital Shoreline Analysis System. Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Florida west (FLwest) Short-term shoreline change rates for the Florida west coast (FLwc) coastal region using the Digital Shoreline Analysis System version 5 Bias Feature for the Florida west coast (FLwc) coastal region containing proxy-datum bias information to be used in the Digital Shoreline Analysis System version 5 Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for northeastern Florida (FLne) Intersection points used to calculate rate of shoreline change statistics for New York State coastal wetlands Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for South Carolina (SC) Long-term shoreline change rates for the Northern California coastal region using the Digital Shoreline Analysis System version 5.0 Bias Feature for the Florida east coast (FLec) coastal region containing proxy-datum bias information to be used in the Digital Shoreline Analysis System version 5 Long-term shoreline change rates for the Central California coastal region using the Digital Shoreline Analysis System version 5.0