Skip to main content
Advanced Search

Filters: Tags: MTBS (X)

60 results (36ms)   

Filters
View Results as: JSON ATOM CSV
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2010. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2010. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
thumbnail
It is well understood that plant phenology is sensitive to climate, however it is not so clear exactly how climate change might alter the spatial and temporal patterns of vegetation phenology. Satellite remote sensing offers a unique vantage point from which to observe phenological cycles across large regions. Although ubiquitous, cycles of green-up and brown-down are complex and exhibit great variability across space and time. Herbivore species such as elk, moose, and deer depend on the availability of herbaceous plants and deciduous shrubs for forage. These vegetation types are most nutritious for herbivores from early season to peak green-up, so characterizing vegetation cycles, or phenology, over the long term...


map background search result map search result map The Effects of Drought on Vegetation Phenology and Wildlife BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2010) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (1999) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2008) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2005) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2004) BLM REA NWP 2011 FI C 2000 MTBS BLM REA CBR 2010 mtbs perims Clip CBR BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2010) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (1999) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2008) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2005) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2004) BLM REA CBR 2010 mtbs perims Clip CBR The Effects of Drought on Vegetation Phenology and Wildlife BLM REA NWP 2011 FI C 2000 MTBS