Skip to main content
Advanced Search

Filters: Tags: Microcoleus vaginatus (X) > Types: Journal Citation (X)

7 results (8ms)   

View Results as: JSON ATOM CSV
Recovery rates of cyanobacterial-lichen soil crusts from disturbance were examined. Plots were either undisturbed or scalped, and scalped plots were either inoculated with surrounding biological crust material or left to recover naturally. Natural recovery rates were found to be very slow. Inoculation significantly hastened recovery for the cyanobacterial/green algal component, lichen cover, lichen species richness, and moss cover. Even with inoculation, however, lichen and moss recovery was minimal. Traditional techniques of assessing recovery visually were found to underestimate time for total recovery. Other techniques, such as extraction of chlorophyll a from surface soil and measurement of sheath material accumulation,...
Cyanobacteria were immobilized on hemp cloth, which was subsequently cut into fine pieces for use as a soil amendment. The amendment is intended for speeding recovery of microbiotic soil crusts in semi-arid and arid lands where such crusts have been destroyed by anthropogenic activities. Microcoleus vaginatus, Schizothrix calcicola, and Nostoc were used to create amendments, but most of the experiments in this study utilized the Microcoleus amendment, as it is the most cosmopolitan and ecologically important cyanobacterial taxon in desert soil crusts. The amendment was found to retain its viability in storage for at least 18 months. M. vaginatus grew best in CT and Z8+ (plus vitamins) media with aeration and addition...
The role of the cyanobacterium Microcoleus vaginatlls in cold-desert soil crusts is investigated using scanning electron microscopy. Crusts from sandstone-, limestone-, and gypsum-derived soils are examined. When dry, polysaccharide sheath material from this cyanobacterium can be seen winding through and across all three types of soil surfaces, attaching to and binding soil particles together. When wet, sheaths and living filaments can be seen absorbing water, swelling and covering soil surfaces even more extensively. Addition of negatively charged material, found both as sheath material and attached clay particles, may affect cation exchange capacity of these soils as well. As a result of these observations, we...
We used microsensors to characterize physicochemical microenvironments and photosynthesis occurring immediately after water saturation in two desert soil crusts from southeastern Utah, which were formed by the cyanobacteria Microcoleus vaginatus Gomont, Nostoc spp., and Scytonema sp. The light fields within the crusts presented steep vertical gradients in magnitude and spectral composition. Near-surface light-trapping zones were formed due to the scattering nature of the sand particles, but strong light attenuation resulted in euphotic zones only ca. 1 mm deep, which were progressively enriched in longer wavelengths with depth. Rates of gross photosynthesis (3.4?9.4 mmol O2�m?2�h?1) and dark respiration (0.81?3.1...
thumbnail
Biological soil crusts arrest soil erosion and supply nitrogen to arid ecosys- tems. To understand their recovery from disturbance, we studied performances of Collema spp. lichens relative to four experimental treatments plus microtopography of soil pedicels, oriented north-northwest to south-southeast in crusts. At sites in Needles (NDLS) and Island in the Sky (ISKY) districts of Canyonlands National Park, lichens were transplanted to NNW, SSE, ENE, WSW, and TOP pedicel faces and exposed to a full-factorial, randomized block experiment with four treatments: nutrient addition (P and K), soil stabilization with polyacrylamide resin (PAM), added cyanobacterial fiber, and biweekly watering. After 14.5 mo (NDLS) and...
The role of the cyanobacterium Microcoleus vaginatlls in cold-desert soil crusts is investigated using scanning electron microscopy. Crusts from sandstone-, limestone-, and gypsum-derived soils are examined. When dry, polysaccharide sheath material from this cyanobacterium can be seen winding through and across all three types of soil surfaces, attaching to and binding soil particles together. When wet, sheaths and living filaments can be seen absorbing water, swelling and covering soil surfaces even more extensively. Addition of negatively charged material, found both as sheath material and attached clay particles, may affect cation exchange capacity of these soils as well. As a result of these observations, we...
Cyanobacterial-lichen soil crusts can be a dominant source of nitrogen for cold-desert ecosystems. Effects of surface disturbance from footprints, bike and vehicle tracks on the nitrogenase activity in these crusts was investigated. Surface disturbances reduced nitrogenase activity by 30?100%. Crusts dominated by the cyanobacterium Microcoleus vaginatus on sandy soils were the most susceptible to disruption; crusts on gypsiferous soils were the least susceptible. Crusts where the soil lichen Collema tenax was present showed less immediate effects; however, nitrogenase activity still declined over time. Levels of nitrogenase activity reduction were affected by the degree of soil disruption and whether sites were...


    map background search result map search result map Treatment effects on performance of N-fixing lichens in disturbed soil crusts of the Colorado Plateau Treatment effects on performance of N-fixing lichens in disturbed soil crusts of the Colorado Plateau