Skip to main content
Advanced Search

Filters: Tags: Mississippi embayment (X) > Types: OGC WFS Layer (X)

19 results (168ms)   

View Results as: JSON ATOM CSV
thumbnail
This report describes the thickness and areal extent of the Sparta aquifer, identifies sands within the fresh-water extent of the aquifer, and presents data and a map that illustrate the generalized potentiometric surface (water levels) during October 1996. The report includes a detailed geophysical log, structure contour maps, hydrogeologic sections, and hydrographs of water levels in selected wells. The potentiometric surface-map can be used for determining direction of ground-water flow, hydraulic gradients, and the effects of withdrawals on the aquifer.
thumbnail
The study of the geohydrology of the Sparta Sand is the initial phase in the investigation of the geohydrology of the Claiborne Group. The thicker sections of the Sparta Sand lie along the axes of the Mississippi embayment and Desha basin. The area of maximum thickness, 1,100-1,200 feet, is in Claiborne and Warren Counties, Miss., and Madison Parish, La. Local thickening or thinning over some structures indicates structural movement during Sparta time. A sand-percentage map prepared from data derived from interpretation of electric logs indicates that the Sparta Sand was deposited as a delta-fluvial plain complex in Arkansas, Louisiana, and Mississippi. This complex shows a text-book example of a well-developed...
thumbnail
The Sparta aquifer is a primary source of groundwater in north-central Louisiana with more than 60 million gallons of water per day being withdrawn in 2015, and public supply and Industry account for over 90 percent of the water-use demand from the Sparta aquifer (Collier, 2018). Concentrated withdrawals from the Sparta aquifer have caused regional water-level declines within the Sparta aquifer (McGee and Brantly, 2015). Widespread concern about the potential effects of declining water levels has brought forth many questions regarding the sustainability of the aquifer as well as continued saltwater intrusion. In cooperation with the Louisiana Department of Transportation and Development, the U.S. Geological Survey...
thumbnail
The Sparta aquifer is the principal source of ground water in north-central Louisiana. In 1985, the aquifer was extensively pumped for public supply (25 Mgal/d) and industrial use (29 Mgal/d and 7 Mgal/d for 1989). More than 100 public supply systems, in 8 parishes, contain water from the Sparta aquifer. Large industrial pumpage from the Sparta aquifer began in 1922 at Bastrop (Sanford, 1973a, p. 60) and in about 1923 at West Monroe. Water levels in wells in the Sparta aquifer have been declining in these arease and in other parts of north-central Louisiana since the early 1920's, when industries began withdrawing large amounts of water. However, in Morehouse Parish the water levels in wells have been recovering...
thumbnail
This report describes the thickness and areal extent of the Sparta aquifer, identifies sands within the fresh-water extent of the aquifer, and presents data and a map that illustrate the generalized potentiometric surface (water levels) during October 1996. The report includes a detailed geophysical log, structure contour maps, hydrogeologic sections, and hydrographs of water levels in selected wells. The potentiometric surface-map can be used for determining direction of ground-water flow, hydraulic gradients, and the effects of withdrawals on the aquifer.
thumbnail
The study of the geohydrology of the Sparta Sand is the initial phase in the investigation of the geohydrology of the Claiborne Group. The thicker sections of the Sparta Sand lie along the axes of the Mississippi embayment and Desha basin. The area of maximum thickness, 1,100-1,200 feet, is in Claiborne and Warren Counties, Miss., and Madison Parish, La. Local thickening or thinning over some structures indicates structural movement during Sparta time. A sand-percentage map prepared from data derived from interpretation of electric logs indicates that the Sparta Sand was deposited as a delta-fluvial plain complex in Arkansas, Louisiana, and Mississippi. This complex shows a text-book example of a well-developed...
thumbnail
During the spring of 2001, water levels were measured in 427 wells in the Sparta-Memphis aquifer in Arkansas and the Sparta aquifer in Louisiana. Water-quality samples were collected for temperature and specific-conductance measurements during the spring and summer of 2001 from 150 wells in Arkansas in the Sparta-Memphis aquifer. Dissolved chloride samples were collected and analyzed for 87 of the 150 wells. Water-quality samples were not collected in Louisiana. Maps of areal distribution of potentiometric surface, difference in water-level measurements from 1997 to 2001, and specific conductance generated from these data reveal spatial trends across the study area. The highest water-level altitude measured in Arkansas...
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) First release: April, 2019; revised April 2021 (version 1.1). The previous version can be obtained by contacting the USGS Lower Mississippi-Gulf...
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) First release: April, 2019; revised April 2021 (version 1.1). The previous version can be obtained by contacting the USGS Lower Mississippi-Gulf...
thumbnail
The most widely used aquifer for industry and public supply in the Mississippi embayment in Arkansas, Louisiana, Mississippi, and Tennessee is the Sparta-Memphis aquifer. Decades of pumping from the Sparta-Memphis aquifer have affected ground-water levels throughout the Mississippi embayment. Regional assessments of water-level data from the aquifer are important to document regional water-level conditions and to develop a broad view of the effects of ground-water development and management on the sustainability and availability of the region's water supply. This information is useful to identify areas of water-level declines, identify cumulative areal declines that may cross State boundaries, evaluate the effectiveness...
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) Ryals, G. N., 1980, Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980: U.S. Geological...
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) First release: April, 2019; revised April 2021 (version 1.1). The previous version can be obtained by contacting the USGS Lower Mississippi-Gulf...
thumbnail
This dataset consists of 127 wideband and 21 long-period magnetotelluric (MT) stations collected from 2016-2019 across parts of Missouri, Arkansas, Tennessee, Illinois, and Kentucky. The U.S. Geological Survey acquired these data as part of regional investigations into the geologic and tectonic framework of the area and to support mineral resource and geologic hazard investigations. These data have been used to generate a 3D regional conductivity model of the area. Files included in this publication include measured electric- and magnetic-field time series as well as estimated impedance and vertical-magnetic field transfer functions.
thumbnail
This dataset contains digitized groundwater quality data from 435 wells that are screened in the Chicot aquifer system. Reported values of interest included specific conductance, total dissolved solids, and chloride (Cl) concentration; other parameters and major/trace element concentrations were included if reported. Values listed as “NA” or “-9999” represent data that was not reported in the physical dataset. A concentration of 0 ppm or ppb represents a reported concentration of 0 and not a null value. Data were collected from scanned versions of well registration records obtained from the Louisiana Department of Natural Resources. Most well registration records may be accessed through Strategic Online Natural...
thumbnail
The Mississippi River Valley alluvial aquifer (MRVA) overlies and is bounded by several regional aquifers that make up the Mississippi embayment aquifer system (MEAS) in the central United States. The MRVA, which consists of Quaternary alluvium, is one of the most heavily pumped aquifers in the nation and is a major source of groundwater for irrigation. Large groundwater-level declines in portions of the aquifer have raised concerns about sustainable use of this important resource. An aquifer-scale assessment of groundwater-age categories based on tritium concentrations was completed to better understand groundwater availability and susceptibility. The presence of tritium, a radioactive isotope of hydrogen, in a...
thumbnail
The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission, the Arkansas Geological Commission, and the Louisiana Department of Transportation and Development has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group since the 1920's. Ground-water withdrawals have increased while water levels have declined since monitoring was initiated. This report has been produced to describe ground-water levels in the aquifers in the Sparta Sand and Memphis Sand and provide information for the management of this valuable resource. The 2005 potentiometric-surface map of the aquifers in the Sparta Sand and Memphis Sand was constructed using water-level data...
thumbnail
This report describes the thickness and areal extent of the Sparta aquifer, identifies sands within the fresh-water extent of the aquifer, and presents data and a map that illustrate the generalized potentiometric surface (water levels) during October 1996. The report includes a detailed geophysical log, structure contour maps, hydrogeologic sections, and hydrographs of water levels in selected wells. The potentiometric surface-map can be used for determining direction of ground-water flow, hydraulic gradients, and the effects of withdrawals on the aquifer. Brantly, J.A., Seanor, R.C., McCoy, K.L., 2002, Hydrogeology and potentiometric surface of the Sparta aquifer in northern Louisiana, October 1996: U.S. Geological...
thumbnail
The study of the geohydrology of the Sparta Sand is the initial phase in the investigation of the geohydrology of the Claiborne Group. The thicker sections of the Sparta Sand lie along the axes of the Mississippi embayment and Desha basin. The area of maximum thickness, 1,100-1,200 feet, is in Claiborne and Warren Counties, Miss., and Madison Parish, La. Local thickening or thinning over some structures indicates structural movement during Sparta time. A sand-percentage map prepared from data derived from interpretation of electric logs indicates that the Sparta Sand was deposited as a delta-fluvial plain complex in Arkansas, Louisiana, and Mississippi. This complex shows a text-book example of a well-developed...
thumbnail
A digital dataset of analog simulation of water-level declines in the Sparta Sand, Mississippi Embayment in Missouri, Kentucky, Arkansas, Tennessee, Louisiana, and Mississippi was developed from J.E. Reed's "Analog simulation of water-level declines in the Sparta Sand, Mississippi Embayment" (1972). The plate was georeferenced to North American Datum 1983 and projected to USA Contiguous Albers Equal Conic (U.S. Geological Survey version) projection (standard parallels 29.5 and 45.5 degrees, central meridian -96 degrees, and latitude of origin 23 degrees). Once georeferenced (using ArcMap v 10.4.1), individual potentiometric contours were digitized manually. Figures included in the digital dataset are figures 2...


    map background search result map search result map Digitized Maps of the Potentiometric Surface of the Sparta Aquifer in North-Central Louisiana, 1886 to 2012 (ver. 1.1, April 2021) Digitized Contours of Georeferenced Plate 1900 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" Digitized Contours from Georeferenced Plate 1965 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1975 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1980 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1886 from "Analog simulation of water-level declines in the Sparta Sand, Mississippi Embayment" Digitized Contour from Georeferenced Plate 2005 from "Status of Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer in Arkansas and the Status of Water Levels in the Sparta Aquifer in Louisiana, Spring 2005" (Schrader and Jones, 2007; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 2001 from "Status of water levels and selected water-quality conditions in the Sparta-Memphis aquifer in Arkansas and the Sparta aquifer in Louisiana, spring-summer 2001" Digitized Contour from Georeferenced plate 2007 from "Potentiometric Surface in the Sparta-Memphis Aquifer of the Mississippi Embayment, Spring 2007" (Shrader, 2008; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1996 from "Louisiana Ground-Water Map No. 13: Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996" Digitized Contours from Georeferenced Plate 1989 from "Louisiana ground-water map no. 3: Potentiometric surface, 1989, and water-level changes, 1980-89, of the Sparta aquifer in north-central Louisiana" Structure Contours of the Base of the Sparta Sand from Plate 3, 1968, from Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas (Payne, 1968) Piezometric Surface of the Sparta Sand from Plate 8, 1968, from Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas (Payne, 1968) Cumulative Thickness Isopachs in the Sparta Sand from Plate 10, 1968, from Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas (Payne, 1968) Structure Contours from Top of Sparta Aquifer from Figure 2, 1996, from Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996 (Brantly, Seanor, and McCoy, 2002) Structure Contours from Bottom of Sparta Aquifer from Figure 3, 1996, from Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996 (Brantly, Seanor, and McCoy, 2002) Magnetotelluric data from Missouri, Arkansas, Tennessee, Illinois, and Kentucky, 2016-2019 Groundwater age categories based on tritium concentrations in samples collected from the Mississippi River Valley alluvial aquifer and aquifers of the Mississippi embayment principal aquifer system Groundwater Quality Data of the Chicot aquifer system Digitized Contours of Georeferenced Plate 1900 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" Digitized Contours from Georeferenced Plate 1965 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1975 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1996 from "Louisiana Ground-Water Map No. 13: Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996" Digitized Contours from Georeferenced Plate 1989 from "Louisiana ground-water map no. 3: Potentiometric surface, 1989, and water-level changes, 1980-89, of the Sparta aquifer in north-central Louisiana" Digitized Contours from Georeferenced Plate 1980 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Structure Contours from Top of Sparta Aquifer from Figure 2, 1996, from Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996 (Brantly, Seanor, and McCoy, 2002) Groundwater Quality Data of the Chicot aquifer system Structure Contours from Bottom of Sparta Aquifer from Figure 3, 1996, from Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996 (Brantly, Seanor, and McCoy, 2002) Cumulative Thickness Isopachs in the Sparta Sand from Plate 10, 1968, from Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas (Payne, 1968) Piezometric Surface of the Sparta Sand from Plate 8, 1968, from Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas (Payne, 1968) Digitized Contours from Georeferenced Plate 2001 from "Status of water levels and selected water-quality conditions in the Sparta-Memphis aquifer in Arkansas and the Sparta aquifer in Louisiana, spring-summer 2001" Structure Contours of the Base of the Sparta Sand from Plate 3, 1968, from Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas (Payne, 1968) Magnetotelluric data from Missouri, Arkansas, Tennessee, Illinois, and Kentucky, 2016-2019 Digitized Contours from Georeferenced Plate 1886 from "Analog simulation of water-level declines in the Sparta Sand, Mississippi Embayment" Digitized Contour from Georeferenced plate 2007 from "Potentiometric Surface in the Sparta-Memphis Aquifer of the Mississippi Embayment, Spring 2007" (Shrader, 2008; version 1.1, April 2021) Digitized Contour from Georeferenced Plate 2005 from "Status of Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer in Arkansas and the Status of Water Levels in the Sparta Aquifer in Louisiana, Spring 2005" (Schrader and Jones, 2007; version 1.1, April 2021) Digitized Maps of the Potentiometric Surface of the Sparta Aquifer in North-Central Louisiana, 1886 to 2012 (ver. 1.1, April 2021) Groundwater age categories based on tritium concentrations in samples collected from the Mississippi River Valley alluvial aquifer and aquifers of the Mississippi embayment principal aquifer system