Skip to main content
Advanced Search

Filters: Tags: New York, (X)

6 results (42ms)   

View Results as: JSON ATOM CSV
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...


    map background search result map search result map shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2010 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2012 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Rockaway Peninsula, NY, 2010 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Rockaway Peninsula, NY, 2012 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Rockaway Peninsula, NY, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Rockaway Peninsula, NY, 2012 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Rockaway Peninsula, NY, 2010 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Rockaway Peninsula, NY, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2012 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2010 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2014