Skip to main content
Advanced Search

Filters: Tags: Nitrate-N (X)

3 results (10ms)   

View Results as: JSON ATOM CSV
Subsurface drainage is a common practice in many agricultural watersheds in the Mid-Western region of the United States. A typical drainage system in east central Illinois is not spaced in a parallel manner, but the subsurface drain lines are laid out in a random and irregular fashion. These subsurface drain lines most often discharge into numerous man-made drainage channels, which ultimately drain to the rivers and the reservoirs. The Little Vermilion River (LVR) watershed in east central Illinois, USA is an example of a watershed with altered hydrology from subsurface drainage systems. A continuous monitoring study has been conducted from 1991 to 2003 on this watershed to quantify the effects of cropping management...
A study was conducted to understand the contributions of tile flow and baseflow to total nitrate-N (NO3-N) loadings in two subsurface (tile)-drained watersheds, namely the Big Ditch (BD) and the Upper Embarras River (UER) watersheds in Illinois. Two stream sections were selected in the watersheds and rectangular cutthroat flumes were installed at the upstream and downstream ends of the stream sections to calculate the flow mass balance for separating baseflow. The stream section at BD site had two tile outlets draining into it. The stream section at UER watershed did not have any tile drain. Tile flow was also measured along with stream flow. Water samples were collected not only from the stream sections using auto-samplers...
One anticipated benefit of ecosystem restoration is water quality improvement. This study evaluated NO3-N and phosphorus in subsurface waters during prairie establishment following decades of row-crop agriculture. A prairie seeding in late 2003 became established in 2006. Wells and suction cup samplers were monitored for NO3-N and phosphorus. Nitrate-N varied with time and landscape position. Non-detectable NO3-N concentrations became modal along ephemeral drainageways in 2006, when average concentrations in uplands first became <10 mg NO3-N L−1. This decline continued and upland groundwater averaged near 2 mg NO3-N L−1 after 2007. The longer time lag in NO3-N response in uplands was attributed to greater quantities...