Skip to main content
Advanced Search

Filters: Tags: Northwest CASC (X)

489 results (13ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
UW_Olallie_photo_metadata & image files: These are the raw timelapse photographs. The date/time stamp is inaccurate for the camera deployed in the open (at the SNOTEL) due to a programming error. This timestamp is one day early (i.e., subtract 1 day from the timestamp when using these data). Also available is metadata for two timelapse cameras and their associated snow depth poles (two visible in each camera's field of view) deployed at Olallie Meadows SNOTEL during water year 2015. One camera was deployed in the open area that is the Olallie Meadows SNOTEL station (the snow pillow is in the field of view). The other camera was deployed in the adjacent forest, approximately 60 m to the southeast of the SNOTEL....
Climate change is already affecting species in many ways. Because individual species respond to climate change differently, some will be adversely affected by climate change whereas others may benefit. Successfully managing species in a changing climate will require an understanding of which species will be most and least impacted by climate change. Although several approaches have been proposed for assessing the vulnerability of species to climate change, it is unclear whether these approaches are likely to produce similar results. In this study, we compared the relative vulnerabilities to climate change of 76 species of birds, mammals, amphibians, and trees based on three different approaches to assessing vulnerability....
thumbnail
The percentage difference between mean modeled snow-water-equivalent (meters) on April 1 for the reference (1989-2011) climate period and mean modeled snow-water-equivalent on April 1 for the T4 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
Mean modeled snow-water-equivalent (meters) on February 20, the date of peak basin-integrated mean modeled snow-water-equivalent (meters) for the T4 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
Some of California’s most cherished coastal wetlands, where endangered birds chatter and green growth thrives, could turn to mudflats by the middle of the century. By the end of the century, they could be gone. New research based on years of observation says rising sea levels might well outpace the ability of coastal wetlands to adapt, inundating them before they have time to colonize higher elevations. Continue Reading >>
thumbnail
Estimates of the probability of mortality in whitebark pine from mountain pine beetles as determined from a logistic generalized additive model of the presence of mortality as functions of the number of trees killed last year, the percent whitebark pine in each cell, minimum winter temperature, average fall temperature, average April - Aug temperature, and cummulative current and previous year summer precipitation. Analysis was done at a 1 km grid cell resolution. Data are a list of points in comma separated text format. Point coordinates are the center of each 1 km grid cell.
The Klamath Basin in Oregon and California is home to a rich abundance of natural and cultural resources, many of which are vulnerable to present and future climate change. Climate change also threatens traditional ways of life for tribal communities, who have deep connections to the region. This project sought to increase the effectiveness of regional climate change adaptation and planning by (1) developing ways to integrate traditional ecological knowledge (TEK) with western science in decision making, (2) building partnerships between tribal, academic, and government institutions, and (3) increasing future capacity to respond to climate change by engaging tribal youth. Through this project, the Quartz Valley...
thumbnail
Data points intensively sampling 46 North American biomes were used to predict the geographic distribution of biomes from climate variables using the Random Forests classification tree. Techniques were incorporated to accommodate a large number of classes and to predict the future occurrence of climates beyond the contemporary climatic range of the biomes. Errors of prediction from the statistical model averaged 3.7%, but for individual biomes, ranged from 0% to 21.5%. In validating the ability of the model to identify climates without analogs, 78% of 1528 locations outside North America and 81% of land area of the Caribbean Islands were predicted to have no analogs among the 46 biomes. Biome climates were projected...
Berry Risk Mapping and Modeling of Native and exotic defoliators in Alaska is a jointly funded project between the Alaska Climate Science Center and the North Pacific Landscape Conservation Cooperative.
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/hyp.10964/abstract): While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, Distributed Hydrology Soil Vegetation Model-Water Quality (DHSVM-WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds...
This story map explores the work being conducted in the project, Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology Across an Ecoregion and Developing Climate Adaptation Recommendations. Explore the story map to learn more about the work being done to understand how wetlands may change in the future.
thumbnail
The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project supports climate-smart conservation and management across forests of northern Idaho...
A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is critical, but challenging across broad spatial scales. One important and understudied aspect of fire regimes is the unburned area within fire perimeters; these areas can function as fire refugia across the landscape during and after wildfire by providing habitat and seed sources. With increasing fire activity, there is speculation that fire intensity and...
Wildfire refugia are forest patches that are minimally-impacted by fire and provide critical habitats for fire-sensitive species and seed sources for post-fire forest regeneration. Wildfire refugia are relatively understudied, particularly concerning the impacts of subsequent fires on existing refugia. We opportunistically re-visited 122 sites classified in 1994 for a prior fire refugia study, which were burned by two wildfires in 2012 in the Cascade mountains of central Washington, USA. We evaluated the fire effects for historically persistent fire refugia and compared them to the surrounding non-refugial forest matrix. Of 122 total refugial (43 plots) and non-refugial (79 plots) sites sampled following the 2012...
This management brief summarizes the results of a project evaluating the scientific body of research on climate adaptation actions relevant to ecological drought. This adaptation science assessment evaluated strategies developed and prioritized by participants at regional adaptation workshops by synthesizing supporting evidence from the literature. The brief presents findings on the benefits and limitations of these climate adaptation options from the accompanying report, Extremes to Ex-Streams: Ecological Drought Adaptation in a Changing Climate.
Abstract (from SpringerOpen): Wildfires in the Pacific Northwest (Washington, Oregon, Idaho, and western Montana, USA) have been immense in recent years, capturing the attention of resource managers, fire scientists, and the general public. This paper synthesizes understanding of the potential effects of changing climate and fire regimes on Pacific Northwest forests, including effects on disturbance and stress interactions, forest structure and composition, and post-fire ecological processes. We frame this information in a risk assessment context, and conclude with management implications and future research needs. Large and severe fires in the Pacific Northwest are associated with warm and dry conditions, and such...
Tribal nations have been actively engaged in efforts to understand climate risks to their natural and cultural resources, and what they can do to prepare. We have carefully selected a suite of resources that may be useful to tribes at each stage in the process of evaluating their vulnerability to climate change—from tribes just getting started to those well on their way.


map background search result map search result map Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Probability of Whitebark Pine Mortality from Mountain Pine Beetle, 1997-2009, Northern Rockies Study Area Modeled snow-water-equivalent, percent difference between historical and projected April 1 values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Timelapse photos at SNOTEL station, locations, and associated metadata, Ollalie Meadows, Wash., 2015 North American vegetation model data for land-use planning in a changing climate: Streamflow Permanence Probability rasters, 2004-2011, Version 2.0 (PROSPER) Timelapse photos at SNOTEL station, locations, and associated metadata, Ollalie Meadows, Wash., 2015 Modeled snow-water-equivalent, percent difference between historical and projected April 1 values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Probability of Whitebark Pine Mortality from Mountain Pine Beetle, 1997-2009, Northern Rockies Study Area North American vegetation model data for land-use planning in a changing climate: Streamflow Permanence Probability rasters, 2004-2011, Version 2.0 (PROSPER)