Skip to main content
Advanced Search

Filters: Tags: OGC WMS Layer (X) > Types: OGC WMS Service (X)

9 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey (USGS) Geology, Geophysics and Geochemistry Science Center (GGGSC) collaborated with the USGS Data at Risk (DaR) team to preserve and release a subset of magnetotelluric data from the San Andreas Fault in Parkfield, California. The San Andreas Fault data were collected by the Branch of Geophysics, a precursor to the now GGGSC, between 1989 and 1994. The magnetotelluric data selected for this preservation project were collected in 1990 using USGS portable truck mounted systems that measure the distribution of electrical conductivity beneath the surface of the earth. Truck mounted systems of this era output data to 3.5” discs, from which data were recovered and transformed to binary or ASCII...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines (England and others, 2019). The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected USGS streamgages. This data release presents peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, and the Powder River Basin, based on data through water year 2022, using methods described by Sando and McCarthy (2018).
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected USGS streamgages. This data release presents peak-flow frequency analyses for selected streamgages in the Upper Yellowstone River Basin, based on data through water year 2022, using methods described by Sando and McCarthy (2018).
thumbnail
This data release contains data sets associated with the 2023 50-State National Seismic Hazard Model Update. The 2023 50-State National Seimsic Hazard Model (NSHM) Update includes an update to the NSHMs for the conterminous U.S (CONUS, last updated in 2018), Alaska (AK, last updated in 2007), and Hawaii (last updated in 2001). Data sets include inputs like seismicity catalogs used as input to the smoothed seismicity model and updated induced seismicity zone polygons in the central and eastern U.S., as well as outputs like hazard curves and uniform-hazard ground motion values. Plots of selected data sets are also included. The data sets provided here are primarily for the 2023 CONUS NHSM and 2023 AK NSHM. Additional...
thumbnail
Continuous 15-minute time-series suspended-sediment concentration data computed from instream turbidity data. Turbidty data is managed by California Department of Water Resources (CDWR) using a YSI 6-series multi-parameter water quality sonde. Complete methods for turbidity data collection are described in attached methods document.


    map background search result map search result map Magnetotelluric Data from the San Andreas Fault, Parkfield CA, 1990 Model Archive Summary and Time-Series Suspended-Sediment Concentrations Computed from a Surrogate Turbidity Regression at USGS Station 11336930 Mokelumne River at Andrus Island near Terminous, Ca (2010 - 2016) Data Release for the 2023 U.S. 50-State National Seismic Hazard Model - Overview Peak-flow frequency analyses for selected streamgages in the Upper Yellowstone River Basin, based on data through water year 2022 PeakFQ version 7.4.1 specifications file for peak-flow frequency analyses for selected streamgages in the Upper Yellowstone River Basin, based on data through water year 2022 WATSTORE Peak flow data for selected streamgages in the Upper Yellowstone River Basin, based on data through water year 2022 PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, Montana, based on data through water year 2022 Results of peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, and the Powder River Basin, Montana, based on data through water year 2022 WATSTORE Peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, Montana, based on data through water year 2022 Model Archive Summary and Time-Series Suspended-Sediment Concentrations Computed from a Surrogate Turbidity Regression at USGS Station 11336930 Mokelumne River at Andrus Island near Terminous, Ca (2010 - 2016) Magnetotelluric Data from the San Andreas Fault, Parkfield CA, 1990 Peak-flow frequency analyses for selected streamgages in the Upper Yellowstone River Basin, based on data through water year 2022 PeakFQ version 7.4.1 specifications file for peak-flow frequency analyses for selected streamgages in the Upper Yellowstone River Basin, based on data through water year 2022 WATSTORE Peak flow data for selected streamgages in the Upper Yellowstone River Basin, based on data through water year 2022 PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, Montana, based on data through water year 2022 Results of peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, and the Powder River Basin, Montana, based on data through water year 2022 WATSTORE Peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, Montana, based on data through water year 2022 Data Release for the 2023 U.S. 50-State National Seismic Hazard Model - Overview