Filters: Tags: Oahu (X)
275 results (123ms)
Filters
Date Range
Extensions
Types Contacts
Categories Tag Types
|
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
This shapefile is the official boundary of the Hawaii Fish Habitat Partnership. The shapefile was developed in 2013 to reflect the boundary as defined by the Hawaii Fish Habitat Partnership, a recognized Fish Habitat Partnership (FHP) of the National Fish Habitat Partnership.
Categories: Data;
Types: ArcGIS REST Map Service,
ArcGIS Service Definition,
Downloadable,
Map Service;
Tags: Analytical boundary,
Aquatic habitats,
Boundaries,
FHP Boundary,
FHP Product,
The U.S. Geological Survey (USGS), in cooperation with the State of Hawaiʻi Department of Transportation, estimated flood magnitudes for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEP) for unregulated streamgages in Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi, using data through water year 2020. Regression equations which can be used to estimate flood magnitude and associated frequency at ungaged streams were developed. The methods and results of the study are published in a separate report (https://doi.org/10.3133/sir20235014). This data release contains (1) a folder with the PeakFQ output files for each streamgage, ".PRT" and ".EXP" files, for use in...
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Hawaii,
Hawaii Island,
Kauai,
Maui,
Molokai,
A sensitivity analysis of groundwater-recharge estimates from a water-budget model was completed for the islands of Oahu and Maui, Hawaii (Johnson and others, 2023). Results of the sensitivity analysis were used to quantify the relative importance of selected model parameters to recharge estimates for three moisture zones (dry, mesic, and wet) on Oahu and Maui. This shapefile contains the boundaries of the moisture zones and boundaries of the model subareas that were used in the model simulations for Oahu. The shapefile attribute information includes the names of the land-cover types assigned to model subareas and the mean annual recharge values determined for the model subareas for the baseline scenario of the...
Categories: Data;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service,
Shapefile;
Tags: Hawaii,
Oahu,
Pacific Islands,
biota,
boundaries,
"The dataset consists of tiled orthogonal imagery produced from nadir images captured by Pictometry International between May 13th, 2010 to May 28th 2011. Automatic aerial triangulation (AAT) was performed. The triangulated frames were rectified to a LiDAR derived DEM. Mosaicing was performed using an automatic seaming algorithm and manually edited to eliminate seams through elevated features where possible. NOTE: As stipulated prior to production of ortho-imagery, source frames from an existing imagery collection were to be utilized. As such, the imagery may contain long shadows, haziness, and cloud shadows. Pictometry has corrected for this where possible and has made every effort to bring the final dataset into...
|
|