Skip to main content
Advanced Search

Filters: Tags: Oahu (X) > Types: OGC WMS Layer (X)

22 results (100ms)   

View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the State of Hawaiʻi Department of Transportation, estimated flood magnitudes for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEP) for unregulated streamgages in Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi, using data through water year 2020. Regression equations which can be used to estimate flood magnitude and associated frequency at ungaged streams were developed. The methods and results of the study are published in a separate report (https://doi.org/10.3133/sir20235014). This data release contains (1) a folder with the PeakFQ output files for each streamgage, ".PRT" and ".EXP" files, for use in...
thumbnail
A sensitivity analysis of groundwater-recharge estimates from a water-budget model was completed for the islands of Oahu and Maui, Hawaii (Johnson and others, 2023). Results of the sensitivity analysis were used to quantify the relative importance of selected model parameters to recharge estimates for three moisture zones (dry, mesic, and wet) on Oahu and Maui. This shapefile contains the boundaries of the moisture zones and boundaries of the model subareas that were used in the model simulations for Oahu. The shapefile attribute information includes the names of the land-cover types assigned to model subareas and the mean annual recharge values determined for the model subareas for the baseline scenario of the...
thumbnail
Resource managers and users seek information that can be used to balance the needs of competing uses of groundwater and streamflow in the Heeia watershed, Oahu. A previously constructed steady-state numerical groundwater-flow model for the island of Oahu, Hawaii (https://doi.org/10.3133/sir20205126) using MODFLOW-2005 with the Seawater Intrusion (SWI2) package was used to examine the effects of withdrawals in the watershed. Four simulations representing a baseline and various withdrawal conditions were run using the previously published numerical model. The baseline simulation represents conditions in 2001-10 which were used to calibrate the Oahu model and to which all other scenarios are compared. The three scenarios...
thumbnail
A sensitivity analysis of groundwater-recharge estimates from a water-budget model was completed for the islands of Oahu and Maui, Hawaii (Johnson and others, 2023). Results of the sensitivity analysis were used to quantify the relative importance of selected model parameters to recharge estimates for three moisture zones (dry, mesic, and wet) on Oahu and Maui. These shapefiles contain the boundaries of the moisture zones and boundaries of the model subareas that were used in the model simulations for Oahu and Maui. Attributes in the shapefiles include the names of the land-cover types assigned to model subareas and the mean annual recharge values determined for the model subareas for the baseline scenario of the...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
This dataset contains O'ahu resident count estimates as a function of travel time out of the standard and extreme tsunami-evacuation zones for three different travel speeds (impaired, slow, and fast walk). The data are organized in a manner which permits summarizing or visualizing the data by tsunami-evacuation zone and/or travel time, with communities listed across the top as columns and individual rows representing the number of residents present in the specific evacuation zone/travel time combination. Due to the nature of the methodology used to distribute residential population to structures, resident numbers are not integers. This dataset is intended for use in the U.S. Geological Survey's O'ahu, HI tsunami...
thumbnail
This dataset contains O'ahu employee count estimates as a function of travel time out of the standard and extreme tsunami-evacuation zones for three different travel speeds (impaired, slow, and fast walk). The data are organized in a manner which permits summarizing or visualizing the data by business classification (community support, dependent-care, emergency service, infrastructure, public venue, and remaining businesses), at-risk population-serving facility type (adult assistance services, child services, correctional facilities, medical and health services, medical center, and schools), tsunami-evacuation zone, and/or travel speed, with business details and evacuation zone/travel speed combinations listed across...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
This data release is comprised of a set of six time travel map shapefiles (two tsunami evacuation zones and three travel times) and three population exposure by travel time tables (residents, employees, and hotel visitors). The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy...
thumbnail
In cooperation with the State of Hawaii Department of Transportation, the U.S. Geological Survey (USGS) has computed a series of basin characteristic rasters for Hawaii to be implemented into the USGS StreamStats application (https://streamstats.usgs.gov/ss/). The basin characteristics, along with geospatial datasets for watershed delineation published as a separate USGS data release (https://doi.org/10.5066/P9N61WJ7), were used to delineate watersheds and determine basin characteristics in StreamStats for Hawaii.
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the State of Hawaii Department of Transportation, has compiled and processed a series of geospatial datasets for Hawaii to be implemented into the USGS StreamStats application (https://streamstats.usgs.gov/ss/). These geospatial datasets, along with basin characteristic datasets published as a separate USGS data release (https://doi.org/10.5066/P9TOQANM), are used to delineate watersheds and determine basin characteristics in StreamStats.
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
Previously constructed steady-state numerical groundwater-flow models for the islands of Kauai, Oahu, and Maui, Hawaii (https://doi.org/10.3133/sir20205126) using MODFLOW-2005 with the Seawater Intrusion (SWI2) package, were used to examine the consequences of historical and plausible future withdrawals and changes in recharge. The volcanic aquifers of the Hawaiian Islands supply water to 1.46 million residents, diverse industries, and a large component of the U.S. military in the Pacific. Groundwater also supplies freshwater that supports ecosystems in streams and near the coast. Hawaii’s aquifers are remarkable given their small size, but the islands’ capacity to store fresh groundwater is limited because each...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
The lack of geographic and thematic maps of coral reefs limits our understanding of reefs and our ability to assess change. The U.S. Geological Survey (USGS) has the capability to compile digital image mosaics that are useful for creating detailed map products. Image maps covering the shallow near-shore coastal waters have been produced for several of the main Hawaiian Islands, including Hawai‘i, Maui, Moloka‘i, and O‘ahu and are presented in JPEG2000 (.jp2) format. The digital-image mosaics were generated by first scanning historical aerial photographs. At the time, available satellite image resolutions were not acceptable and the aerial photographs used were the best option. The individually scanned digital...
thumbnail
This dataset contains O'ahu hotel visitor estimates as a funtion of travel time out of the standard and extreme tsunami-evacuation zones for three different travel speeds (impaired, slow, and fast walk). The data are organized in a manner which permits summarizing or visualizing the data by tsunami-evacuation zone and/or travel time, with communities listed across the top as columns and individual rows representing the number of hotel visitors present in the specific evacuation zone/travel time combination. These data support the following publication: Wood, N.J., Jones, J.L., Peters, J., and Richards, K., 2018, Pedestrian-evacuation modeling to reduce vehicle use for distant tsunami evacuations in Hawai'i: International...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the State of Hawaiʻi Department of Transportation, estimated flood magnitudes for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEP) for unregulated streamgages in Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi, using data through water year 2020. Regression equations which can be used to estimate flood magnitude and associated frequency at ungaged streams were developed. The methods and results of the study are published in a separate report (https://doi.org/10.3133/sir20235014). This data release contains data supporting the larger work: (1) PeakFQ inputs and selected outputs for 238 selected streamgages...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the island of Oahu, Hawaii for a projected future-climate condition representative of phase 5 of the Coupled Model Intercomparison Project (CMIP5) Representative Concentration Pathway 8.5 (RCP8.5) 2041-70 scenario climate and 2010 land cover, as described in USGS Professional Paper (PP) 1876 by Izuka and Rotzoll (2023). The water-budget components for each model subarea were computed for the future-climate condition and 2010 land cover using a water-budget model developed by Engott and others (2017). The 2010 land-cover map developed by Engott (2017) was used to define the land-cover conditions and the model...


map background search result map search result map Island of O‘ahu Pedestrian tsunami evacuation results for two tsunami-evacuation zones (standard and extreme) and three travel speeds (impaired, slow, and fast walk) for O'ahu, HI Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and impaired walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and slow walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and fast walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and impaired walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and slow walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and fast walk speed Pedestrian evacuation times for residents on the island of O'ahu, Hawai'i, for standard and extreme tsunami evacuation zones by community, modeled at three travel speeds (impaired, slow, and fast walk) Pedestrian evacuation times for employees on the island of O'ahu, Hawai'i, for standard and extreme tsunami evacuation zones by community, modeled at three travel speeds (impaired, slow, and fast walk) Pedestrian evacuation times for hotel visitors on the island of O'ahu, Hawai'i, for standard and extreme tsunami evacuation zones by community, modeled at three travel speeds (impaired, slow, and fast walk) Basin characteristic rasters used in the update of Hawaiʻi StreamStats, 2022 Geospatial datasets for watershed delineation used in the update of Hawaiʻi StreamStats, 2022 Data in support of flood-frequency report—Magnitude and Frequency of Floods on Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi, Based on Data through Water Year 2020 Generalized least-squares WREG regression files for Hawaiʻi flood-frequency analysis, based on data through water year 2020 MODFLOW-2005 and SWI2 models for assessing groundwater availability scenarios in volcanic aquifers on Kauai, Oahu, and Maui, Hawaii Mean annual water-budget components for Oahu, Hawaii, for future-climate conditions, CMIP5 RCP8.5 2041-70 scenario rainfall and 2010 land cover MODFLOW-2005 and SWI2 models for assessing groundwater and surface-water interactions in the Heeia Watershed, Oahu, Hawaii Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the islands of Oahu and Maui, Hawaii Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the island of Oahu, Hawaii Island of O‘ahu Mean annual water-budget components for Oahu, Hawaii, for future-climate conditions, CMIP5 RCP8.5 2041-70 scenario rainfall and 2010 land cover Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and slow walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and slow walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and impaired walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and impaired walk speed Pedestrian tsunami evacuation results for two tsunami-evacuation zones (standard and extreme) and three travel speeds (impaired, slow, and fast walk) for O'ahu, HI Pedestrian evacuation times for residents on the island of O'ahu, Hawai'i, for standard and extreme tsunami evacuation zones by community, modeled at three travel speeds (impaired, slow, and fast walk) Pedestrian evacuation times for employees on the island of O'ahu, Hawai'i, for standard and extreme tsunami evacuation zones by community, modeled at three travel speeds (impaired, slow, and fast walk) Pedestrian evacuation times for hotel visitors on the island of O'ahu, Hawai'i, for standard and extreme tsunami evacuation zones by community, modeled at three travel speeds (impaired, slow, and fast walk) Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and fast walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and fast walk speed Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the island of Oahu, Hawaii MODFLOW-2005 and SWI2 models for assessing groundwater and surface-water interactions in the Heeia Watershed, Oahu, Hawaii Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the islands of Oahu and Maui, Hawaii MODFLOW-2005 and SWI2 models for assessing groundwater availability scenarios in volcanic aquifers on Kauai, Oahu, and Maui, Hawaii Geospatial datasets for watershed delineation used in the update of Hawaiʻi StreamStats, 2022 Basin characteristic rasters used in the update of Hawaiʻi StreamStats, 2022 Data in support of flood-frequency report—Magnitude and Frequency of Floods on Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi, Based on Data through Water Year 2020 Generalized least-squares WREG regression files for Hawaiʻi flood-frequency analysis, based on data through water year 2020