Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: Other Landscapes (X)

1,329 results (13ms)   

Date Range
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Summary Analysis of historical streamflow trends and their relationship to landscape characteristics is essential for understanding geographic differences in runoff within the Great Lakes basin and for distinguishing temporal trends from temporal variance. Factor analysis of streamflow records (1956–1988) from 32 US Geological Survey gauging stations within the Great Lakes basin revealed distinct spatio-temporal patterns of stream runoff within five different regions of the basin. Streams represented by the first annual factor occurred in southern Wisconsin and the lower peninsula of Michigan, and exhibited a linear increase in mean annual streamflow over the 33 year period caused by increased autumn and winter...
Summary Human activities have historically affected hydrology in the upper Midwestern United States, specifically through the conversion of forests and prairie grasslands to agricultural uses. The hydrologic impacts of land-use change due to settlement on the water balance of three Great Lakes states: Minnesota, Wisconsin, and Michigan were analyzed using the Variable Infiltration Capacity (VIC) large-scale hydrology model, and changes in the spatial distribution of vegetation types were studied. Point model simulations demonstrated that the VIC model simulated changes in average annual and monthly evapotranspiration (ET) and total runoff response were in the same direction and had similar magnitudes to values from...
Nuisance blooms of heterocystous Cyanobacteria in Lake Winnipeg have nearly doubled in size since the mid 1990s. The increases are the result of a recent rapid increase in loading and concentration of phosphorus. The rapid increase in phosphorus is largely the result of two factors. The first factor is the result of rapidly increased livestock production and use of synthetic fertilizer in the Red River Valley, with smaller contributions of phosphorus from the city of Winnipeg and other human development in the Red and Winnipeg river basins. The second factor is the increased frequency and intensity of spring floods in the Red River watershed in recent years, which have greatly enhanced the transfer of phosphorus...