Skip to main content
Advanced Search

Filters: Tags: Outer Banks (X)

25 results (3.5s)   

Filters
Contacts (Less)
View Results as: JSON ATOM CSV
thumbnail
This data release presents structure-from-motion (SFM) products derived from aerial imagery surveys with precise Global Navigation Satellite System (GNSS) navigation data flown in a piloted fixed wing aircraft taken along the North Carolina coast in response to Hurricane Florence (available here https://coastal.er.usgs.gov/data-release/doi-P91KB9SF/). USGS researchers use the elevation models and orthorectified imagery to assess future coastal vulnerability, nesting habitats for wildlife, and provide data for hurricane impact models. The products span the coast over both highly developed towns and natural areas, including federal lands. These products represent the coast after Hurricane Florence and cover the Cape...
thumbnail
This data release presents structure-from-motion products derived from imagery taken along the North Carolina coast in response to storm events and the recovery process. USGS researchers use the aerial photogrammetry data and products to assess future coastal vulnerability, nesting habitats for wildlife, and provide data for hurricane impact models. This research is part of the Remote Sensing Coastal Change Project. Products include digital elevation models and orthorectified imagery (RGB averaged products) created from aerial imagery surveys with precise Global Navigation Satellite Systen (GNSS) navigation data flown in a piloted fixed wing aircraft (available here https://coastal.er.usgs.gov/data-release/doi-P91KB9SF/)....
thumbnail
In the face of sea level rise and as climate change conditions increase the frequency and intensity of tropical storms along the north-Atlantic Coast, coastal areas will become increasingly vulnerable to storm damage, and the decline of already-threatened species could be exacerbated. Predictions about response of coastal birds to effects of hurricanes will be essential for anticipating and countering environmental impacts. This project will assess coastal bird populations, behavior, and nesting in Hurricane Sandy-impacted North Carolina barrier islands. The project comprises three components: 1) ground-based and airborne lidar analyses to examine site specific selection criteria of coastal birds; 2) NWI classification...
thumbnail
RGB-averaged orthoimages were created from aerial imagery collected on November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial imagery collections and a structure from motion (SFM) workflow. These data can be used with geographic information...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Atlantic Ocean, Bathymetry and Elevation, Beaufort Inlet, CMHRP, Cape Hatteras, All tags...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Digital elevation models (DEMs) were created from aerial imagery collected between September 08 and September 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions post-Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface after Hurricane Dorian and were created to document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial imagery collections and a structure from motion (SFM) workflow. These data can be used with geographic information systems or...
Tags: Atlantic Ocean, Bathymetry and Elevation, Beaufort Inlet, CMHRP, Cape Hatteras, All tags...
thumbnail
Digital elevation models (DEMs) were created from aerial imagery collected May 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial imagery collections and a structure from motion (SFM) workflow. These data can be used with geographic information systems or other software to identify topographic and shallow-water bathymetric features.
Tags: Atlantic Ocean, Bathymetry and Elevation, Beaufort Inlet, CMHRP, Cape Hatteras, All tags...
thumbnail
Digital elevation models (DEMs) were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The digital elevation models (DEMs) help researchers estimate the land surface before Hurricane Dorian and were created to document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial imagery collections and a structure from motion (SFM) workflow. These data can be used with geographic...
Tags: Atlantic Ocean, Bathymetry and Elevation, Beaufort Inlet, CMHRP, Cape Hatteras, All tags...
thumbnail
Orthoimages were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface before Hurricane Dorian and were created to document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial imagery collections and a structure from motion (SFM) workflow. These data can be used with geographic information...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Atlantic Ocean, Bathymetry and Elevation, Beaufort Inlet, CMHRP, Cape Hatteras, All tags...
thumbnail
RGB-averaged orthoimages were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RGB-averaged orthoimages were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RGB-averaged orthoimages help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial imagery collections and a structure from motion (SFM) workflow. These data can be used with geographic information systems or other software to identify topographic and shallow-water...
Tags: Atlantic Ocean, Bathymetry and Elevation, Beaufort Inlet, CMHRP, Cape Hatteras, All tags...
thumbnail
This data release presents structure-from-motion (SFM) products derived from aerial imagery surveys with precise Global Navigation Satellite System (GNSS) navigation data flown in a piloted fixed wing aircraft taken along the North Carolina coast in response to Hurricane Florence (available here https://coastal.er.usgs.gov/data-release/doi-P91KB9SF/). USGS researchers use the elevation models and orthorectified imagery to assess future coastal vulnerability, nesting habitats for wildlife, and provide data for hurricane impact models. The products span the coast over both highly developed towns and natural areas, including federal lands. These products represent the coast after Hurricane Florence and cover the Cape...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
This data release presents structure-from-motion (SfM) products derived from aerial imagery collected along the North Carolina coast in response to storm events and the recovery process. U.S. Geological Survey (USGS) researchers use the aerial imagery and products to assess future coastal vulnerability, nesting habitats for wildlife, and provide data for hurricane impact models. This research is part of the Remote Sensing Coastal Change Project. Products include digital elevation models and orthorectified imagery (RGB-averaged products) created from aerial imagery surveys with precise Global Navigation Satellite System (GNSS) navigation data flown in a piloted fixed-wing aircraft. The products span the coast over...
thumbnail
Digital elevation models (DEMs) were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial imagery collections and a structure from motion (SFM) workflow. These data can be used with geographic information systems or other software to identify topographic and shallow-water bathymetric features.
Tags: Atlantic Ocean, Bathymetry and Elevation, Beaufort Inlet, CMHRP, Cape Hatteras, All tags...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
RGB-averaged ortho products were created from aerial imagery collected between September 8 and 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial imagery collections and a structure from motion (SFM) workflow. These data can be used with geographic...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Atlantic Ocean, Bathymetry and Elevation, Beaufort Inlet, CMHRP, Cape Hatteras, All tags...
thumbnail
Digital elevation models (DEMs) were created from aerial imagery collected November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface one-month post-Hurricane Dorian and were created to document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial imagery collections and a structure from motion (SFM) workflow. These data can be used with geographic information systems or other...
Tags: Atlantic Ocean, Bathymetry and Elevation, Beaufort Inlet, CMHRP, Cape Hatteras, All tags...
thumbnail
In the face of sea level rise and as climate change conditions increase the frequency and intensity of tropical storms along the north-Atlantic Coast, coastal areas will become increasingly vulnerable to storm damage, and the decline of already-threatened species could be exacerbated. Predictions about response of coastal birds to effects of hurricanes will be essential for anticipating and countering environmental impacts. This project will assess coastal bird populations, behavior, and nesting in Hurricane Sandy-impacted North Carolina barrier islands. The project comprises three components: 1) ground-based and airborne lidar analyses to examine site specific selection criteria of coastal birds; 2) NWI classification...


map background search result map search result map Cape Lookout, North Carolina 2012 National Wetlands Inventory Habitat Classification Hurricane Sandy impacts on Cape Hatteras (North Carolina), 2012 National Wetlands Inventory Classification Offshore baseline for the northern North Carolina (NCnorth) coastal region generated to calculate shoreline change rates Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for northern North Carolina (NCnorth) Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for northern North Carolina (NCnorth) Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for northern North Carolina (NCnorth) Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for northern North Carolina (NCnorth) Aerial Photogrammetry Data and Products of the North Carolina coast: 2018-10-06 to 2018-10-08, post-Hurricane Florence Post-Hurricane Florence RGB averaged orthoimagery of coastal North Carolina Post-Hurricane Florence Digital Elevation Models of coastal North Carolina Digital elevation models (DEMs) of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian RGB-averaged orthoimagery of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian Digital elevation models (DEMs) of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian RGB-averaged orthoimagery of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian Digital elevation models (DEMs) of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian RGB-averaged orthoimagery of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian Digital elevation models (DEMs) of coastal North Carolina, from 2020-02-08 to 2020-02-09 RGB-averaged orthoimagery of coastal North Carolina, from 2020-02-08 to 2020-02-09 Digital elevation models (DEMs) of coastal North Carolina, from 2020-05-08 to 2020-05-09 Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for northern North Carolina (NCnorth) Cape Lookout, North Carolina 2012 National Wetlands Inventory Habitat Classification Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for northern North Carolina (NCnorth) Offshore baseline for the northern North Carolina (NCnorth) coastal region generated to calculate shoreline change rates Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for northern North Carolina (NCnorth) Hurricane Sandy impacts on Cape Hatteras (North Carolina), 2012 National Wetlands Inventory Classification RGB-averaged orthoimagery of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian Digital elevation models (DEMs) of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian Digital elevation models (DEMs) of coastal North Carolina, from 2020-02-08 to 2020-02-09 Digital elevation models (DEMs) of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian RGB-averaged orthoimagery of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian Digital elevation models (DEMs) of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian RGB-averaged orthoimagery of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian RGB-averaged orthoimagery of coastal North Carolina, from 2020-02-08 to 2020-02-09 Digital elevation models (DEMs) of coastal North Carolina, from 2020-05-08 to 2020-05-09 Post-Hurricane Florence Digital Elevation Models of coastal North Carolina Post-Hurricane Florence RGB averaged orthoimagery of coastal North Carolina Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for northern North Carolina (NCnorth)