Skip to main content
Advanced Search

Filters: Tags: PERMAFROST (X) > partyWithName: Burke J Minsley (X)

37 results (54ms)   

View Results as: JSON ATOM CSV
thumbnail
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at five sites in Interior Alaska in September 2021 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. Borehole nuclear magnetic resonance (NMR) data were collected at two sites in order to determine liquid water content at depth in shallow boreholes. NMR data were collected in a 2.25 m-deep borehole at the North Star golf course adjacent to one of the ERT profiles, and in another two 1.625 m-deep boreholes adjacent to Big Trail Lake where previous NMR measurements were made in 2019 and 2020.
Electrical resistivity tomography (ERT) measurements were collected by the U.S. Geological Survey (USGS) at two sites in Interior Alaska in September 2019 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. First, ERT data were collected at Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska, to quantify permafrost characteristics beneath the lake and across its shorelines. Three 222 m ERT survey lines were collected perpendicular to the North, East, and South shorelines, and two 110 m lines were collected parallel to the southeast and northeast shorelines. Models of electrical resistivity produced from these data revealed...
thumbnail
Fire and hydrology can be significant drivers of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to disturbance. New methods are needed to understand the vulnerability and resilience of different landscapes to permafrost degradation. This project uses remote sensing, geophysical, and other field-based observations to reveal details of both near-surface (<1 m) and deeper (>1 m) permafrost characteristics over multiple scales. This LandCarbon project currently supports the NASA ABoVE project, 'Vulnerability of inland waters and the aquatic...
Airborne electromagnetic (AEM) and magnetic survey data were collected during February 2016 along 300 line kilometers in the western Yukon Flats near Stevens Village, Alaska. Data were acquired with the CGG RESOLVE frequency-domain helicopter-borne electromagnetic systems together with a Scintrex Cesium Vapour CS-3 magnetometer. The AEM average depth of investigation is about 100 m. The survey was flown at a nominal flight height of 30 m above terrain along widely spaced reconnaissance lines. This data release includes raw and processed AEM data and laterally-constrained inverted resistivity depth sections along all flight lines. This release also includes unprocessed and processed magnetic data that has been drift...
thumbnail
Airborne electromagnetic (AEM) and magnetic survey data were collected during February 2016 along 300 line kilometers in the western Yukon Flats near Stevens Village, Alaska. Data were acquired with the CGG RESOLVE frequency-domain helicopter-borne electromagnetic systems together with a Scintrex Cesium Vapour CS-3 magnetometer. The AEM average depth of investigation is about 100 m. The survey was flown at a nominal flight height of 30 m above terrain along widely spaced reconnaissance lines. This data release includes raw and processed AEM data and laterally-constrained inverted resistivity depth sections along all flight lines. This release also includes unprocessed and processed magnetic data that has been drift...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...
thumbnail
Airborne electromagnetic (AEM) and magnetic survey data were collected during February 2016 along 300 line kilometers in the western Yukon Flats near Stevens Village, Alaska. Data were acquired with the CGG RESOLVE frequency-domain helicopter-borne electromagnetic systems together with a Scintrex Cesium Vapour CS-3 magnetometer. The AEM average depth of investigation is about 100 m. The survey was flown at a nominal flight height of 30 m above terrain along widely spaced reconnaissance lines. This data release includes raw and processed AEM data and laterally-constrained inverted resistivity depth sections along all flight lines. This release also includes unprocessed and processed magnetic data that has been drift...
Geophysical measurements and related field data were collected by the U.S. Geological Survey (USGS) at the Alaska Peatland Experiment (APEX) site in Interior Alaska from 2018 to 2020 to characterize subsurface thermal and hydrologic conditions along a permafrost thaw gradient. The APEX site is managed by the Bonanza Creek LTER (Long Term Ecological Research). In July 2018, soil temperature and moisture sensors were installed at six out of the nine instrument locations (APEX1, APEX2, APEX3, APEX4, APEX7, APEX9). Thermistors (PS103J2, US Sensor, Orange, CA, USA) were placed at depths of 5, 30, 60, 120, and 180 centimeters (cm) with three replicates. Three sites (APEX1, APEX4, APEX9) contained an additional single...
thumbnail
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (less than 1 m) and deeper (greater than 1 m) impacts of fire on permafrost along 14 transects that span burned-unburned boundaries in different landscape settings within interior...
Borehole nuclear magnetic resonance (NMR) data were collected by the U.S. Geological Survey (USGS) at Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska, to quantify unfrozen water content and soil properties at select sites in and around the lake edge. In September 2019, NMR data were collected within two 2.3 m deep boreholes adjacent to the East and North perpendicular electrical resistivity survey lines. Manual permafrost-probe measurements of thaw depths were also collected. These two boreholes were logged a second time in late March 2020. Additional one-time NMR measurements of liquid water content were collected in September 2019 within the lakebed sediments (0-25 cm depth) in approximately 2.5...
A coupled hydrogeophysical forward and inverse modeling approach is developed to illustrate the ability of frequency-domain airborne electromagnetic (AEM) data to characterize subsurface physical properties associated with sublacustrine permafrost thaw during lake-talik formation. Numerical modeling scenarios are evaluated that consider non-isothermal hydrologic responses to variable forcing from different lake depths and for different hydrologic gradients. A novel physical property relationship connects the dynamic distribution of electrical resistivity to ice saturation and temperature outputs from the SUTRA groundwater simulator with freeze–thaw physics. The influence of lithology on electrical resistivity is...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
The West Fork of Dall Creek is located ~100km southwest of Coldfoot, AK along the Dalton Highway, south of the Brooks Range. Five ground penetrating radar (GPR) profiles were collected on 4/4/2019 at the West Fork of Dall Creek in interior Alaska. The West Fork of Dall Creek is composed of unburned black spruce forest with a burn scar from the 2004 Dall City Fire. All collected profiles, other than the Central Midpoint Survey (CMP), transect the burn scar between start and end locations in unburned black spruce forest. Data were collected with a Sensors and Software pulseEKKO pro unit and 100 mHz antennas. Four of the lines were conducted as common offset surveys with manual data collection that employed a consistent...
Categories: Data; Tags: Alaska, geophysics, permafrost
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
The West Fork of Dall Creek is located ~100km southwest of Coldfoot, AK along the Dalton Highway, south of the Brooks Range. The West Fork of Dall Creek is composed of unburned black spruce forest with a burn scar from the 2004 Dall City Fire. Multi-season, multi-method geophysical data were collected both within the burned and unburned areas. Geophysical techniques used include Nuculear Magnetic Resonance (NMR) and Ground Penetrating Radar (GPR) data. NMR data were collected with a down borehole Dart tool (Vista Clara Inc.). GPR data were collected with a Sensors and Software pulseEKKO pro unit and 100 mHz antennas and a high power (1000V) transmitter. Soil temperature data were collected from the unburned black...
thumbnail
The West Fork of Dall Creek is located ~100km southwest of Coldfoot, AK along the Dalton Highway, south of the Brooks Range. The West Fork of Dall Creek is composed of unburned black spruce forest with a burn scar from the 2004 Dall City Fire. HOBO Tidbit v2 temperature data loggers that recorded soil temperature were installed in the unburned black spruce forest adjacent to the burn scar on 5/10/2017 and removed on 6/26/2018. Data were collected from depths of 10, 30, 50, and 70 cm.
Categories: Data; Tags: Alaska, permafrost, soil temperature
Geophysical measurements and related field data were collected by the U.S. Geological Survey (USGS) at the Alaska Peatland Experiment (APEX) site in Interior Alaska from 2018 to 2020 to characterize subsurface thermal and hydrologic conditions along a permafrost thaw gradient. The APEX site is managed by the Bonanza Creek LTER (Long Term Ecological Research). Nine instrument sites were established in April 2018 and initially comprised a buried seismic station for continuous passive recording of the seismic wavefield, and seven of the nine sites were given a borehole for repeat nuclear magnetic resonance (NMR) logging. Between June 2018 and September 2019, measurements of active-layer thaw depth were regularly recorded...
Geophysical measurements and related field data were collected by the U.S. Geological Survey (USGS) at the Alaska Peatland Experiment (APEX) site in Interior Alaska from 2018 to 2020 to characterize subsurface thermal and hydrologic conditions along a permafrost thaw gradient. The APEX site is managed by the Bonanza Creek LTER (Long Term Ecological Research). Nine instrument sites were established in April 2018, seven of which were given a borehole approximately 2.3 meters (m) deep for repeat nuclear magnetic resonance (NMR) logging to quantify unfrozen water content and soil properties in the near surface. NMR data were collected from each borehole a total of ten times between April 2018 and October 2020, at a...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. We present a combination of multiscale remote sensing, geophysical, and field observations that reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost. Along 11 transects that span burned-unburned boundaries in different...


map background search result map search result map Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2015 Electrical resistivity tomography (ERT) inverted models; Alaska, 2014 Airborne electromagnetic and magnetic survey data and inverted resistivity models, western Yukon Flats, Alaska, February 2016 Airborne electromagnetic and magnetic survey data, Western Yukon Flats, Alaska, February 2016 Airborne electromagnetic inverted resistivity models, Western Yukon Flats, Alaska, February 2016 Alaska permafrost characterization Alaska permafrost characterization: Geophysical and related field data collected from 2016-2017 Electrical Resistivity Tomography Data collected in Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Data Collected in Alaska 2016-2017 Geophysical and related field data from the West Fork of Dall Creek, AK 2017-2019 Soil Temperature Data from West Fork of Dall Creek, AK 2019 Ground Penetrating Radar data from West Fork of Dall Creek, AK 2019 Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance Data & Models from 2019-2020 Alaska permafrost characterization: Electrical Resistivity Tomography Data & Models from 2019 APEX Borehole Nuclear Magnetic Resonance (NMR) Data and Models from 2018-2020 APEX Soil Temperature and Moisture Data from 2018-2020 APEX Thaw Depth Data from 2018-2019 Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance (NMR) data collected in 2021 Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance Data & Models from 2019-2020 Geophysical and related field data from the West Fork of Dall Creek, AK 2017-2019 Soil Temperature Data from West Fork of Dall Creek, AK 2019 Ground Penetrating Radar data from West Fork of Dall Creek, AK 2019 APEX Borehole Nuclear Magnetic Resonance (NMR) Data and Models from 2018-2020 APEX Soil Temperature and Moisture Data from 2018-2020 APEX Thaw Depth Data from 2018-2019 Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance (NMR) data collected in 2021 Alaska permafrost characterization: Electrical Resistivity Tomography Data & Models from 2019 Airborne electromagnetic and magnetic survey data, Western Yukon Flats, Alaska, February 2016 Airborne electromagnetic inverted resistivity models, Western Yukon Flats, Alaska, February 2016 Airborne electromagnetic and magnetic survey data and inverted resistivity models, western Yukon Flats, Alaska, February 2016 Electrical Resistivity Tomography Data collected in Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Data Collected in Alaska 2016-2017 Alaska permafrost characterization: Geophysical and related field data collected from 2016-2017 Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2015 Electrical resistivity tomography (ERT) inverted models; Alaska, 2014 Alaska permafrost characterization