Skip to main content
Advanced Search

Filters: Tags: PERMAFROST (X)

323 results (48ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Climate change coupled with an intensifying wildfire regime is becoming an important driver of permafrost loss and ecosystem change in the northern boreal forest. There is a growing need to understand the effects of fire on the spatial distribution of permafrost and its associated ecological consequences. We focus on the effects of fire a decade after disturbance in a rocky upland landscape in the interior Alaskan boreal forest. Our main objectives were to (1) map near-surface permafrost distribution and drainage classes and (2) analyze the controls over landscape-scale patterns of post-fire permafrost degradation. Relationships among remote sensing variables and field-based data on soil properties (temperature,...
thumbnail
For more than 25 years, the U.S. Geological Survey Gas Hydrates Project has compiled and maintained an internal database of locations where the existence of gas hydrate has been confirmed or inferred in research studies. The existence of gas hydrate was considered confirmed when gas hydrate was recovered by researchers or videotaped from a vehicle (such as a submersible or remotely operated vehicle) near the sea floor. The existence of gas hydrate was considered inferred when seismic data, borehole logs, or certain geochemical characteristics match anomalies known to characterize gas hydrate. This data release provides a text description of the region, geographic coordinates, and the citation for the published reference...
Categories: Data; Tags: Alaska North Slope, Arctic, Atlantic, Beaufort Sea, Black Sea, All tags...
thumbnail
Airborne electromagnetic (AEM) and magnetic survey data were collected during February 2016 along 300 line kilometers in the western Yukon Flats near Stevens Village, Alaska. Data were acquired with the CGG RESOLVE frequency-domain helicopter-borne electromagnetic systems together with a Scintrex Cesium Vapour CS-3 magnetometer. The AEM average depth of investigation is about 100 m. The survey was flown at a nominal flight height of 30 m above terrain along widely spaced reconnaissance lines. This data release includes raw and processed AEM data and laterally-constrained inverted resistivity depth sections along all flight lines. This release also includes unprocessed and processed magnetic data that has been drift...
thumbnail
This map shows the depth of the active layer in permafrost areas for the current, near-term, and long-term decades in the YKL region, as well as the depth of winter freeze in areas without permafrost. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics appropriate for applications that potential users of the data may contemplate. The User is encouraged to carefully consider the content of the metadata...
thumbnail
Some of the YKL rasters intentionally do not align or have the same extent. These rasters were not snapped to a common raster per the authors' discretion. Please review selected rasters prior to use. These varying alignments are a result of the use of differing source data sets and all products derived from them. We recommend that users snap or align rasters as best suits their own projects. - This file includes a downscaled projection of decadal Active Layer Thickness and Seasonally Frozen Layer Thickness (m) for the decade 2010-2019 at 2km spatial resolution, using the A2 emissions scenario. The raster contains both negative and positive values. Positive values relate to the active layer thickness, or depth of...
thumbnail
This map shows the retreat of permafrost in the YKL region, by 5th level HUC. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics appropriate for applications that potential users of the data may contemplate. The User is encouraged to carefully consider the content of the metadata file associated with these data. The BLM should be cited as the data source in any products derived from these data.
thumbnail
Surface-based 2D electrical resistivity tomography (ERT) surveys were used to investigate the distribution of permafrost at wetland sites on the alluvial plain north of the Tanana River, 20 km southwest of Fairbanks, Alaska, in June and September 2014. The sites contained habitat types characteristic of interior Alaska, including thermokarst bog, forested permafrost plateau, and a rich fen. These habitats range from treed to open and vary in groundcover vegetation and peat thickness. Individual surveys used a cable with 56 electrodes at 2-m spacing. At a fen site, ERT surveys were performed across a mixed spruce forest area across a vegetation gradient into an open fen area. At a bog site,surveys were performed...
thumbnail
Denali National Park and Preserve (DENA), located in central Alaska, is home to iconic and dynamic landscapes surrounding the tallest mountain range in North America, the Alaska Range. DENA preserves over 6 million acres of wild land that provides opportunities for recreation, subsistence hunting and gathering, preservation of cultural resources, and scientific research. Despite its size and popularity, DENA has only one road—the dead-end, 92-mile Denali National Park Road (hereafter referred to as the Park Road). The Park Road is mostly gravel; only the first 15 miles are paved. It is the only access for most DENA infrastructure, including visitor centers, staff facilities, campgrounds, and businesses. The Park...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Alaska, Alaska Range, Browne glaciation, Cantwell Basin, Cantwell Formation, All tags...
thumbnail
Information on the nature and distribution of permafrost is critical to assessing the response of Arctic ecosystems to climate change, because thawing permafrost under a warming climate will cause thaw settlement and affect micro-topography, surface water redistribution and groundwater movement, soil carbon balance, trace gas emissions, vegetation changes, and habitat use. While a small-scale regional permafrost map is available, as well as information from numerous site-specific large-scale mapping projects, landscape-level mapping of permafrost characteristics is needed for regional modeling and climate impact assessments. The project addresses this need by: (1) compiling existing soil/permafrost data from available...
Permafrost is a unique characteristic of polar regions and high mountains and is fundamentalto geomorphic processes and ecological development in permafrost-affected environments.Because permafrost impedes drainage and ice-rich permafrost settles upon thawing, degradationof permafrost in response to climate change will have large consequences for tundra and borealecosystems (Osterkamp 2005, Jorgenson and Osterkamp 2005, Shur and Osterkamp 2007,Jorgenson et al. 2010, 2013). Thawing permafrost affects surface hydrology by impoundingwater in subsiding areas and enhances drainage of upland areas. Changes in soil drainage altersoil carbon dynamics, habitats for vegetation and wildlife, and emissions of greenhouse gases(Ping...
thumbnail
Interactions and feedbacks between abundant surface waters and permafrost fundamentally shapelowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceedslake depth and mean annual bed temperatures (MABTs) remain below freezing. However, decliningMIT since the1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity towinter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data.Empirical model experiments suggest that shallow (1m depth) lakes have warmed substantially over the last30years (2.4°C), withMABT above freezing5 of the last 7years.This is incomparison to slower ratesofwarming...
This dataset includes one vector shapefile delineating the position of the top edge of the coastal permafrost bluffs at Barter Island, Alaska spanning seven decades, between the years of 1950 and 2020. Bluff-edge positions delineated from a combination of aerial photography, declassified satellite photography, and very-high resolution satellite imagery can be used to quantify the movement of the bluff edge through time. These data were used to calculate rates of change every 10 meters alongshore using the Digital Shoreline Analysis System (DSAS) version 5.0. DSAS uses a measurement baseline method to calculate rate-of-change statistics. Transects are cast from the reference baseline to intersect each bluff edge...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These rasters represent output from the Boreal ALFRESCO (Alaska Frame Based Ecosystem Code) model. Boreal ALFRESCO operates on an annual time step, in a landscape composed of 1 x 1 km pixels, a scale appropriate for interfacing with mesoscale climate and carbon models. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Coverage of this dataset includes much of the state of Alaska (but does exclude Southeastern AK, Kodiak Island, portions of the Alaska Peninsula, and the Aleutian Islands)....
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.


map background search result map search result map Airborne electromagnetic inverted resistivity models, Western Yukon Flats, Alaska, February 2016 Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate Stand Age Projections 2060-2069 Active Layer Thickness 2080-2089 Active Layer Thickness 2070-2079 Active Layer Thickness 2000-2009 Potential Evapotranspiration 2010-2019: ECHAM5 - A1B Scenario Potential Evapotranspiration 2050-2059: ECHAM5 - A1B Scenario Historical Stand Age 1980-1989 Historical Stand Age 1940-1949 Permafrost Database Development, Characterization, and Mapping for Northern Alaska Permafrost Mapping in Two Wetland Systems North of the Tanana River in Interior Alaska 2014, ERT Data BLM REA YKL 2011 Active Layer and Seasonal Freeze BLM REA YKL 2011 Permafrost Retreat Around Communities Preliminary global database of known and inferred gas hydrate locations Historical coastal bluff edge positions at Barter Island, Alaska for the years spanning 1950 to 2020 Permafrost Characterization and Mapping for Northern Alaska Final Report Data release for the Geologic Map of the Denali Park Road Corridor, Denali National Park, Alaska Permafrost Mapping in Two Wetland Systems North of the Tanana River in Interior Alaska 2014, ERT Data Historical coastal bluff edge positions at Barter Island, Alaska for the years spanning 1950 to 2020 Airborne electromagnetic inverted resistivity models, Western Yukon Flats, Alaska, February 2016 Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate Permafrost Database Development, Characterization, and Mapping for Northern Alaska Permafrost Characterization and Mapping for Northern Alaska Final Report BLM REA YKL 2011 Active Layer and Seasonal Freeze BLM REA YKL 2011 Permafrost Retreat Around Communities Stand Age Projections 2060-2069 Active Layer Thickness 2080-2089 Active Layer Thickness 2070-2079 Active Layer Thickness 2000-2009 Potential Evapotranspiration 2010-2019: ECHAM5 - A1B Scenario Potential Evapotranspiration 2050-2059: ECHAM5 - A1B Scenario Historical Stand Age 1980-1989 Historical Stand Age 1940-1949 Preliminary global database of known and inferred gas hydrate locations