Skip to main content
Advanced Search

Filters: Tags: Pacific Islands (X) > partyWithName: Pacific Islands Water Science Center (X)

22 results (37ms)   

View Results as: JSON ATOM CSV
thumbnail
The shapefile associated with this metadata file represents the spatial distribution of mean annual water-budget components, in inches, for Hawaii Island, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of predevelopment conditions (1916-83 rainfall and 1870 land cover), as described in USGS Scientific Investigations Report (SIR) 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea data set, consisting of 467,805 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets. Spatial datasets...
thumbnail
A sensitivity analysis of groundwater-recharge estimates from a water-budget model was completed for the islands of Oahu and Maui, Hawaii (Johnson and others, 2023). Results of the sensitivity analysis were used to quantify the relative importance of selected model parameters to recharge estimates for three moisture zones (dry, mesic, and wet) on Oahu and Maui. This shapefile contains the boundaries of the moisture zones and boundaries of the model subareas that were used in the model simulations for Oahu. The shapefile attribute information includes the names of the land-cover types assigned to model subareas and the mean annual recharge values determined for the model subareas for the baseline scenario of the...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for a projected climate condition representative of phase 3 of the Coupled Model Intercomparison Project (CMIP3) A1B 2080-99 scenario climate and 2017 land cover, as described in USGS SIR 2019-5064. The water-budget components for each model subarea were computed for the future climate condition using a water-budget model developed by Johnson and others (2018). The 2017 land-cover map developed by Mair (2018) was used to define the land-cover conditions and the model subareas. The shapefile attribute information associated with each subarea (or polygon) present an estimate of mean...
thumbnail
These shapefiles represent the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for a set of eight future climate and land-cover scenarios. The future climate conditions used in the water-budget analyses were derived from two end-of-century downscaled climate projections including (1) a projected future climate condition representative of phase 3 of the Coupled Model Intercomparison Project (CMIP3) A1B 2080-99 scenario climate described in Zhang and others (2016a, 2016b) and (2) a projected future climate condition representative of phase 5 of the Coupled Model Intercomparison Project (CMIP5) Representative Concentration Pathway 8.5 (RCP8.5) 2080-99 scenario...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of average climate conditions (1978–2007 rainfall) and 2010 land cover, as described in USGS SIR 2014-5168. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model subareas were generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets that characterize the spatial distribution of rainfall, fog interception, irrigation, reference evapotranspiration, direct runoff,...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for a projected climate condition representative of phase 5 of the Coupled Model Intercomparison Project (CMIP5) Representative Concentration Pathway 8.5 (RCP8.5) 2071-99 scenario rainfall and 2017 land cover, as described in USGS SIR 2019-5064. The water-budget components for each model subarea were computed for the future climate condition using a water-budget model developed by Johnson and others (2018). The 2017 land-cover map developed by Mair (2018) was used to define the land-cover conditions and the model subareas. The shapefile attribute information associated with each subarea...
thumbnail
A sensitivity analysis of groundwater-recharge estimates from a water-budget model was completed for the islands of Oahu and Maui, Hawaii (Johnson and others, 2023). Results of the sensitivity analysis were used to quantify the relative importance of selected model parameters to recharge estimates for three moisture zones (dry, mesic, and wet) on Oahu and Maui. These shapefiles contain the boundaries of the moisture zones and boundaries of the model subareas that were used in the model simulations for Oahu and Maui. Attributes in the shapefiles include the names of the land-cover types assigned to model subareas and the mean annual recharge values determined for the model subareas for the baseline scenario of the...
thumbnail
The shapefile associated with this metadata file represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Oahu, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of average climate conditions (1978–2007 rainfall) and 2010 land cover, as described in USGS Scientific Investigations Report (SIR) 2015-5010. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model subareas were generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets that characterize the spatial distribution of rainfall, fog...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Oahu, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of predevelopment conditions (1978–2007 rainfall and 1870 land cover), as described in USGS Scientific Investigations Report (USGS SIR) 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea dataset, consisting of 441,315 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial datasets. Spatial datasets merged include those...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Kauai, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of recent conditions (1978–2007 rainfall and 2010 land cover), as described in USGS Scientific Investigations Report (SIR) 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea data set, consisting of 400,714 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets. Spatial datasets merged include those that characterize...
thumbnail
The shapefile associated with this metadata file represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Oahu, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of drought conditions (1998–2002 rainfall) and 2010 land cover, as described in USGS Scientific Investigations Report (SIR) 2015-5010. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model subareas were generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets that characterize the spatial distribution of rainfall, fog interception,...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of current conditions (2001-10 rainfall and 2001-10 land cover), as described in USGS Scientific Investigations Report (USGS SIR) 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea dataset, consisting of 318,429 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial datasets. Spatial datasets merged include those that characterize...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of predevelopment conditions (1978–2007 rainfall and 1870 land cover), as described in USGS Scientific Investigations Report (SIR) 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea dataset, consisting of 318,429 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial datasets. Spatial datasets merged include those that...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Oahu, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of current conditions (2001-10 rainfall and 2001-10 land cover), as described in USGS Scientific Investigations Report (USGS SIR) 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea dataset, consisting of 395,955 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial datasets. Spatial datasets merged include those that characterize...
thumbnail
A sensitivity analysis of groundwater-recharge estimates from a water-budget model was completed for the islands of Oahu and Maui, Hawaii (Johnson and others, 2023). Results of the sensitivity analysis were used to quantify the relative importance of selected model parameters to recharge estimates for three moisture zones (dry, mesic, and wet) on Oahu and Maui. This shapefile contains the boundaries of the moisture zones and boundaries of the model subareas that were used in the model simulations for Maui. The shapefile attributes include the names of the land-cover types assigned to model subareas and the mean annual recharge values determined for the model subareas for the baseline scenario of the sensitivity...
thumbnail
The shapefile associated with this metadata file represents the spatial distribution of mean annual water-budget components, in inches, for Hawaii Island, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of recent conditions (1916-83 rainfall and 2008 land cover), as described in USGS Scientific Investigations Report (SIR) 2011-5078 and summarized in USGS SIR 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea dataset, consisting of 467,805 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Kauai, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of current conditions (2001-10 rainfall and 2001-10 land cover), as described in U.S. Geological Survey Scientific Investigations Report (USGS SIR) 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea dataset, consisting of 400,714 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial datasets. Spatial datasets merged include...
thumbnail
This data release contains the shapefiles of mean annual water-budget components for Guam for historic (1990‒2009) and future (2080‒2099) climate conditions. Components estimated for the 1990–2009 scenario represent an update to the historic (1961–2005) components estimated by Johnson (2012), and serve as a historic baseline for the components estimated for the future (2080–2099) climate scenario. The recharge distributions were estimated as part of a larger effort (Gingerich and others, 2019) to evaluate how one set of climate projections may impact Guam’s future groundwater resources. The recharge estimates may be used in numerical groundwater models that can evaluate the collective impacts of changes in recharge,...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the island of Oahu, Hawaii for a projected future-climate condition representative of phase 5 of the Coupled Model Intercomparison Project (CMIP5) Representative Concentration Pathway 8.5 (RCP8.5) 2041-70 scenario climate and 2010 land cover, as described in USGS Professional Paper (PP) 1876 by Izuka and Rotzoll (2023). The water-budget components for each model subarea were computed for the future-climate condition and 2010 land cover using a water-budget model developed by Engott and others (2017). The 2010 land-cover map developed by Engott (2017) was used to define the land-cover conditions and the model...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for an average (or present-day) climate condition and 2017 land cover, as described in USGS SIR 2019-5064. The water-budget components for each model subarea were computed for a scenario representative of present-day climate conditions during 1978-2007 using a water-budget model developed by Johnson and others (2018). The 2017 land-cover map developed by Mair (2018) was used to define the land-cover conditions and the model subareas. The shapefile attribute information associated with each subarea (or polygon) present an estimate of mean annual rainfall, fog interception, irrigation,...


map background search result map search result map Mean annual water-budget components for the Island of Maui, Hawaii, for average climate conditions, 1978-2007 rainfall and 2010 land cover (version 2.0) Mean annual water-budget components for the Island of Maui, Hawaii, for predevelopment conditions, 1978–2007 rainfall and 1870 land cover (version 2.0) Mean annual water-budget components for the Island of Maui, Hawaii, for current conditions, 2001-10 rainfall and 2001-10 land cover (version 2.0) Mean annual water-budget components for the Island of Oahu, Hawaii, for current conditions, 2001-10 rainfall and 2001-10 land cover (ver. 2.0) Mean annual water-budget components for the Island of Oahu, Hawaii, for predevelopment conditions, 1978-2007 rainfall and 1870 land cover (ver. 2.0) Mean annual water-budget components for the Island of Kauai, Hawaii, for current conditions, 2001-10 rainfall and 2001-10 land cover (ver. 2.0) Mean annual water-budget components for the Island of Kauai, Hawaii, for recent conditions, 1978-2007 rainfall and 2010 land cover (ver. 2.0) Mean annual water-budget components for Guam for historic (1990–2009) and future (2080–2099) climate conditions Mean annual water-budget components for the Island of Maui, Hawaii, for average climate conditions, 1978-2007 rainfall and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for projected climate conditions, CMIP3 A1B 2080-99 scenario climate and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for projected climate conditions, CMIP5 RCP8.5 2071-99 scenario rainfall and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for a set of eight future climate and land-cover scenarios Mean annual water-budget components for the Island of Oahu, Hawaii, for average climate conditions, 1978-2007 rainfall and 2010 land cover (version 2.0) Mean annual water-budget components for the Island of Oahu, Hawaii, for drought conditions, 1998-2002 rainfall and 2010 land cover (version 2.0) Mean annual water-budget components for Hawaii Island, Hawaii, for predevelopment conditions, 1916-83 rainfall and 1870 land cover Mean annual water-budget components for Hawaii Island, Hawaii, for recent conditions, 1916-83 rainfall and 2008 land cover Mean annual water-budget components for Oahu, Hawaii, for future-climate conditions, CMIP5 RCP8.5 2041-70 scenario rainfall and 2010 land cover Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the islands of Oahu and Maui, Hawaii Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the island of Oahu, Hawaii Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the island of Maui, Hawaii Mean annual water-budget components for Guam for historic (1990–2009) and future (2080–2099) climate conditions Mean annual water-budget components for the Island of Kauai, Hawaii, for current conditions, 2001-10 rainfall and 2001-10 land cover (ver. 2.0) Mean annual water-budget components for the Island of Kauai, Hawaii, for recent conditions, 1978-2007 rainfall and 2010 land cover (ver. 2.0) Mean annual water-budget components for Oahu, Hawaii, for future-climate conditions, CMIP5 RCP8.5 2041-70 scenario rainfall and 2010 land cover Mean annual water-budget components for the Island of Oahu, Hawaii, for average climate conditions, 1978-2007 rainfall and 2010 land cover (version 2.0) Mean annual water-budget components for the Island of Oahu, Hawaii, for drought conditions, 1998-2002 rainfall and 2010 land cover (version 2.0) Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the island of Oahu, Hawaii Mean annual water-budget components for the Island of Oahu, Hawaii, for current conditions, 2001-10 rainfall and 2001-10 land cover (ver. 2.0) Mean annual water-budget components for the Island of Oahu, Hawaii, for predevelopment conditions, 1978-2007 rainfall and 1870 land cover (ver. 2.0) Mean annual water-budget components for Hawaii Island, Hawaii, for predevelopment conditions, 1916-83 rainfall and 1870 land cover Mean annual water-budget components for Hawaii Island, Hawaii, for recent conditions, 1916-83 rainfall and 2008 land cover Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the islands of Oahu and Maui, Hawaii