Skip to main content
Advanced Search

Filters: Tags: Photoinhibition (X)

2 results (9ms)   

View Results as: JSON ATOM CSV
A desiccation-tolerant cyanobacterium, Nostoc commune, shows unique responses to dehydration. These responses are: (i) loss of PSII activity in parallel with the loss of photosynthesis; (ii) loss of PSI activity; and (iii) dissipation of light energy absorbed by pigment-protein complexes. In this study, the deactivation of PSII is shown to be important in avoiding photoinhibition when the Calvin-Benson cycle is repressed by dehydration. Furthermore, our evidence suggests that dissipation of light energy absorbed by PSII blocks photoinhibition under strong light in dehydrated states. Published in Plant & Cell Physiology, volume 49, issue 3, on pages 488 - 92, in 2008.
1. Microclimate was measured and photosynthetic responses to a climate warming manipulation were compared for the evergreen shrub Artemisia tridentata and the herbaceous forb Erigeron speciosus in the Rocky Mountains, Colorado, USA. 2. Soil was warmer and drier under infra-red heaters compared with control plots. 3. Midday xylem pressure potential did not differ for A. tridentata on heated vs control plots but was lower for E. speciosus on heated plots compared with controls. Leaf temperatures did not vary for the two species on heated or control plots. 4. There were no significant treatment or species differences in the diurnal patterns of CO2 assimilation or stomatal conductance to water vapour. Also, there were...