Skip to main content
Advanced Search

Filters: Tags: Portland, Oregon (X)

14 results (150ms)   

View Results as: JSON ATOM CSV
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
This digital dataset, compiled from previously published andunpublished data sources, contains a personal geodatabase andraster data of features related to the repeated inundation of theWillamette Valley and Portland basin by Missoula Flood waters inLate Pleistocene time. The feature classes contained within theWill_Valley geodatabase are called 'erratics', representing thelocations of ice-rafted erratics; 'contours', representinginundation levels associated with stratigraphic evidence ofrepeated floodings; and 'geology', representing the generaldistribution of Missoula Flood deposits. A stand-alone tablewithin the geodatabase contains geologic unit descriptions forthe geology polygons contained in the 'geology'...
Tags: 41003 = Benton, 41005 = Clackamas, 41009 = Columbia, 41043 = Linn, 41047 = Marion, All tags...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
This digital dataset was compiled from newly released U.S.Geological Survey 10-meter digital elevation model (DEM) data,along with stream and transportation coverages previouslypublished on the internet. This report consists of a digitalrepresentation of the physiography of the Willamette Valley.Contained in this dataset is: 1) 10-meter DEM data for the entireWillamette Valley; 2) the ARC/INFO grids used to create the colorshaded-relief and gray scale shaded-relief images; 3) thenecessary data ARC/INFO data to used to plot these data; and 4)several reports detailing the data formats (this docuement) andproducers used to create these datasets. The scale of theoriginal 10-meter DEM data should not be violated. Any...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...


    map background search result map search result map Shaded-relief and Color Shaded-relief maps of the Willamette Valley, Oregon Maps Showing Inundation Depths, Ice-Rafted Erratics, and Sedimentary Facies of Late Pleistocene Missoula Flood in the Willamette Valley, Oregon Flood inundation mapping data for Johnson Creek near Sycamore, Oregon Flood inundation extents for flows of 800 to 3,080 cfs at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor.shp) Areas of uncertainty for flood inundation extents at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_breach.shp) HEC-RAS model boundary for flood inundation maps for Johnson Creek at Sycamore gage, Portland, Oregon Flood inundation depth for a flow of 800 cfs (stage 9) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_9.tif) Flood inundation depth for a flow of 982 cfs (stage 10) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_10.tif) Flood inundation depth for a flow of 1,200 cfs (stage 11) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_11.tif) Flood inundation depth for a flow of 1,450 cfs (stage 12) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_12.tif) Flood inundation depth for a flow of 1,750 cfs (stage 13) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_13.tif) Flood inundation depth for a flow of 2,130 cfs (stage 14) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_14.tif) Flood inundation depth for a flow of 2,578 cfs (stage 15) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_15.tif) Flood inundation depth for a flow of 3,080 cfs (stage 16) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_16.tif) Flood inundation extents for flows of 800 to 3,080 cfs at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor.shp) HEC-RAS model boundary for flood inundation maps for Johnson Creek at Sycamore gage, Portland, Oregon Areas of uncertainty for flood inundation extents at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_breach.shp) Flood inundation mapping data for Johnson Creek near Sycamore, Oregon Flood inundation depth for a flow of 800 cfs (stage 9) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_9.tif) Flood inundation depth for a flow of 982 cfs (stage 10) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_10.tif) Flood inundation depth for a flow of 1,200 cfs (stage 11) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_11.tif) Flood inundation depth for a flow of 1,450 cfs (stage 12) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_12.tif) Flood inundation depth for a flow of 1,750 cfs (stage 13) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_13.tif) Flood inundation depth for a flow of 2,130 cfs (stage 14) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_14.tif) Flood inundation depth for a flow of 2,578 cfs (stage 15) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_15.tif) Flood inundation depth for a flow of 3,080 cfs (stage 16) at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_16.tif) Maps Showing Inundation Depths, Ice-Rafted Erratics, and Sedimentary Facies of Late Pleistocene Missoula Flood in the Willamette Valley, Oregon Shaded-relief and Color Shaded-relief maps of the Willamette Valley, Oregon