Skip to main content
Advanced Search

Filters: Tags: Potential Evapotranspiration (X)

27 results (131ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
IMPORTANT NOTE: A more recent version of this data release is available from this link. This data release is the update of the U.S. Geological Survey - ScienceBase data release by Bera and Over (2016), with the processed data through September 30, 2015. The primary data for each year is downloaded from the ANL website (http://gonzalo.er.anl.gov/ANLMET/numeric/) and is processed following the guidelines documented in Over and others (2010) and Bera (2014). Hourly potential evapotranspiration computed using the computer program LXPET (Lamoreux Potential Evapotranspiration). Murphy (2005) describes in detail the computer program LXPET. References Cited: ...
thumbnail
This data release is the update of the U.S. Geological Survey - ScienceBase data release by Bera and Over (2018), with the data processed through September 30, 2018. The primary data for water year 2018 (a water year is the 12-month period, October 1 through September 30, designated by the calendar year in which it ends) were downloaded from the Argonne National Laboratory (ANL) (Argonne National Laboratory, 2018) and processed following the guidelines documented in Over and others (2010). Daily potential evapotranspiration (PET) is computed from average daily air temperature, average daily dewpoint temperature, daily total wind speed, and daily total solar radiation, and disaggregated to hourly PET by using the...
The text file "PET.txt" contains hourly potential evapotranspiration (PET) data, in thousandths of an inch, from January 1, 1948, to September 30, 2018. Daily PET were computed from average daily air temperature, average daily dewpoint temperature, daily total wind speed, and daily total solar radiation and disaggregated to hourly PET, using the Fortran program LXPET (Murphy, 2005). The primary source of the data is Argonne National Laboratory (Argonne National Laboratory, 2018), and data processing followed the guidelines documented in Over and others (2010). References Cited: Argonne National Laboratory, 2018, Meteorological data, accessed on October 10, 2018, at http://www.atmos.anl.gov/ANLMET/. ...
thumbnail
Project Summary Climate change is projected to have substantial impacts on Pacific Northwest water resources and ecosystems. Recognizing this, resource managers have expressed growing interest in incorporating climate change information into long-range planning. The availability of hydrologic scenarios to support climate change adaptation and long-range planning, however, has been limited until very recently to a relatively small number of selected case studies. More comprehensive resources needed to support regional planning have been lacking. Furthermore, ecosystem studies at the landscape scale need consistent climate change information and databases over large geographic areas. Products using a common set of...
The ability to apply a hydrologic model to large numbers of basins for forecasting purposes requires a quick and effective calibration strategy. This paper presents a step wise, multiple objective, automated procedure for hydrologic model calibration. This procedure includes the sequential calibration of a model's simulation of solar radiation (SR), potential evapotranspiration (PET), water balance, and daily runoff. The procedure uses the Shuffled Complex Evolution global search algorithm to calibrate the U.S. Geological Survey's Precipitation Runoff Modeling System in the Yampa River basin of Colorado. This process assures that intermediate states of the model (SR and PET on a monthly mean basis), as well as the...
ARGN14.WDM contains nine data series: air temperature in degrees Fahrenheit (dsn 400), dewpoint temperature in degrees Fahrenheit (dsn 500), wind speed in miles per hour (dsn 300), solar radiation in Langleys (dsn 600), computed potential evapotranspiration in thousandths of an inch (dsn 200), and four flags data series for air temperature (dsn 410), dewpoint temperature (dsn 510), wind speed (dsn 310) and solar radiation (dsn 610) respectively from January 1,1948, to September 30, 2015. The primary source of the data is the Argonne National Laboratory, Illinois. To open this file user needs to install any of the utilities described in the section "The Related External Resources" in this page.
The text file "PET.txt" contains hourly potential evapotranspiration (PET) data in thousandths of an inch from January 1, 1948, to September 30, 2017. Daily PET in thousandths of an inch is computed from average daily air temperature in degrees Fahrenheit (°F), average daily dewpoint temperature in degrees Fahrenheit (°F), daily total wind movement in miles (mi), and daily total solar radiation in Langleys per day (Lg/d) and disaggregated to hourly PET in thousandths of an inch using the Fortran program LXPET (Murphy, 2005). The primary source of the data is Argonne National Laboratory (Argonne National Laboratory, 2017) and is processed following the guidelines documented in Over and others (2010). References...
ARGN16.WDM contains nine data series: air temperature in degrees Fahrenheit (dsn 400), dewpoint temperature in degrees Fahrenheit (dsn 500), wind speed in miles per hour (dsn 300), solar radiation in Langleys (dsn 600), computed potential evapotranspiration in thousandths of an inch (dsn 200), and four data-source flag series for air temperature (dsn 410), dewpoint temperature (dsn 510), wind speed (dsn 310) and solar radiation (dsn 610) respectively from January 1,1948, to September 30, 2016. The primary source of the data is the Argonne National Laboratory, Illinois. To open this file user needs to install any of the utilities described in the section "The Related External Resources" in this page.
The text file "PET.txt" contains the hourly data from January 1, 1948, to September 30, 2016. Daily potential evapotranspiration (PET) in thousandths of an inch is computed from average daily air temperature in degrees Fahrenheit (°F), average daily dewpoint temperature in degrees Fahrenheit (°F), daily total wind movement in miles (mi), and daily total solar radiation in Langleys per day (Lg/d) and disaggregated to hourly PET in thousandths of an inch using the Fortran program LXPET (Murphy, 2005). Reference Cited: Murphy, E.A., 2005, Comparison of potential evapotranspiration calculated by the LXPET (Lamoreux Potential Evapotranspiration) Program and by the WDMUtil (Watershed Data Management Utility) Program:...
ARGN17.WDM contains nine data series: air temperature in degrees Fahrenheit (dsn 400), dewpoint temperature in degrees Fahrenheit (dsn 500), wind speed in miles per hour (dsn 300), solar radiation in Langleys (dsn 600), computed potential evapotranspiration in thousandths of an inch (dsn 200), and four data-source flag series for air temperature (dsn 410), dewpoint temperature (dsn 510), wind speed (dsn 310) and solar radiation (dsn 610) respectively from January 1,1948, to September 30, 2017. The primary source of the data is Argonne National Laboratory (Argonne National Laboratory, 2017) and is processed following the guidelines documented in Over and others (2010). Daily potential evapotranspiration (PET) in...
Watershed Data Management (WDM) database file ARGN18.WDM is an update of ARGN17.WDM (Bera and Over, 2018) with the processed data from October 1, 2017 through September 30, 2018 appended to it. The primary data were downloaded from the Argonne National Laboratory (ANL) (Argonne National Laboratory, 2018) and processed following the guidelines documented in Over and others (2010). ARGN18.WDM file contains nine data series: air temperature, in degrees Fahrenheit (dsn 400), dewpoint temperature, in degrees Fahrenheit (dsn 500), wind speed, in miles per hour (dsn 300), solar radiation, in Langleys (dsn 600), computed potential evapotranspiration, in thousandths of an inch (dsn 200), and four data-source flag series...
thumbnail
Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099. The climate data includes temperature and precipitation whereas water balance data includes Potential Evapotranspiration (PET) and Moisture Index (MI) estimated using Penman-Monteith and Thornthwaite methods defining as Penman PET, Penman MI, Thornthwaite PET and Thornthwaite MI. Both types of MI was estimated as a ratio of...
thumbnail
This tabular data set represents annual average potential evapotranspiration values (millimeters) described in Wolock and McCabe (2017), compiled for the NHDPlus version 2 data suite (NHDPlusV2) for the conterminous United States for the years 2014 and 2015. Linkage of the potential evapotranspiration data with NHDPlusV2 is achieved through the common unique identifier COMID. The potential evapotranspiration values are estimated both for: 1) individual reach catchments and 2) reach catchments accumulated upstream through the river network. The reach catchment information characterizes data at the local scale, whereas the catchments accumulated through the river network characterize cumulative upstream conditions....
The text file "PET.txt" contains the hourly computed potential evapotranspiration (PET) data from January 1, 1948, to September 30, 2015. This data is computed from average daily air temperature, average daily dewpoint temperature, daily unadjusted wind speed, and daily solar radiation using the Fortran program LXPET. This program is documented in detail in Murphy (2005). Reference Cited: Murphy, E.A., 2005, Comparison of potential evapotranspiration calculated by the LXPET (Lamoreux Potential Evapotranspiration) Program and by the WDMUtil (Watershed Data Management Utility) Program: US Geological Survey OpenFile Report 2005-1020, 20p., https://pubs.er.usgs.gov/publication/ofr20051020.
Abstract (from http://www.sciencedirect.com/science/article/pii/S0022169414010087): Monthly calibrated values of the Hamon PET coefficient ( C) are determined for 109,951 hydrologic response units (HRUs) across the conterminous United States (U.S.). The calibrated coefficient values are determined by matching calculated mean monthly Hamon PET to mean monthly free-water surface evaporation. For most locations and months the calibrated coefficients are larger than the standard value reported by Hamon. The largest changes in the coefficients were for the late winter/early spring and fall months, whereas the smallest changes were for the summer months. Comparisons of PET computed using the standard value of C and computed...
thumbnail
This data release is the update of the U.S. Geological Survey - ScienceBase data release by Bera and Over (2017), with the processed data through September 30, 2017. The primary data for each year is downloaded from the Argonne National Laboratory (ANL) (Argonne National Laboratory, 2017) and is processed following the guidelines documented in Over and others (2010). Daily potential evapotranspiration (PET) in thousandths of an inch is computed from average daily air temperature in degrees Fahrenheit (°F), average daily dewpoint temperature in degrees Fahrenheit (°F), daily total wind movement in miles (mi), and daily total solar radiation in Langleys per day (Lg/d) and disaggregated to hourly PET in thousandths...
thumbnail
This tabular data set represents annual water balance variables as described in Wolock and McCabe (2017) averaged over the years 2000 through 2014, compiled for the NHDPlus version 2.1 data suite (NHDPlusV2) for the conterminous United States. The variables included are: actual evapotranspiration (AET) , potential evapotranspiration (PET), precipitation (PPT), runoff (RUN) , percent of annual precipitation as snow (SNO) , soil moisture storage (STO), and temperature (TAV). Linkage of these data with NHDPlusV2 is achieved through the common unique identifier COMID. The values are estimated both for: 1) individual reach catchments and 2) reach catchments accumulated upstream through the river network. The reach catchment...
thumbnail
The California Basin Characterization Model (CA-BCM 2014) dataset provides historical and projected climate and hydrologic surfaces for the region that encompasses the state of California and all the streams that flow into it (California hydrologic region ). The CA-BCM 2014 applies a monthly regional water-balance model to simulate hydrologic responses to climate at the spatial resolution of a 270-m grid. The model has been calibrated using a total of 159 relatively unimpaired watersheds for the California region. The historical data is based on 800m PRISM data spatially downscaled to 270 m using the gradient-inverse distance squared approach (GIDS), and the projected climate surfaces include five CMIP-3 (GFDL,...


map background search result map search result map Hydrologic Climate Change Scenarios for the Pacific Northwest Columbia River Basin and Coastal Drainages California Basin Characterization Model Downscaled Climate and Hydrology Attributes for NHDPlus Version 2.1 Reach Catchments and Modified Routed Upstream Watersheds for the Conterminous United States: Average Annual Water Balance Variables over the Period of Record, 2000-2014 Meteorological Database, Argonne National Laboratory, Illinois, January 1, 1948 - September 30, 2015 Attributes for NHDPlus Version 2.1 Reach Catchments and Modified Routed Upstream Watersheds for the Conterminous United States: Annual Average Potential Evapotranspiration (millimeters) from 2014 - 2015 Catchment-flowline network and selected model inputs for an enhanced and updated spatially referenced statistical assessment of dissolved-solids load sources and transport in streams of the Upper Colorado River Basin Meteorological Database, Argonne National Laboratory, Illinois, January 1, 1948 - September 30, 2017 Water balance across regional climate gradients:  A comparison of two potential evapotranspiration metrics (1980-2099). Meteorological Database, Argonne National Laboratory, Illinois, January 1, 1948 - September 30, 2018 Catchment-flowline network and selected model inputs for an enhanced and updated spatially referenced statistical assessment of dissolved-solids load sources and transport in streams of the Upper Colorado River Basin Hydrologic Climate Change Scenarios for the Pacific Northwest Columbia River Basin and Coastal Drainages California Basin Characterization Model Downscaled Climate and Hydrology Water balance across regional climate gradients:  A comparison of two potential evapotranspiration metrics (1980-2099). Attributes for NHDPlus Version 2.1 Reach Catchments and Modified Routed Upstream Watersheds for the Conterminous United States: Average Annual Water Balance Variables over the Period of Record, 2000-2014 Attributes for NHDPlus Version 2.1 Reach Catchments and Modified Routed Upstream Watersheds for the Conterminous United States: Annual Average Potential Evapotranspiration (millimeters) from 2014 - 2015