Skip to main content
Advanced Search

Filters: Tags: Potomac River (X) > partyWithName: U.S. Geological Survey (X)

30 results (64ms)   

View Results as: JSON ATOM CSV
thumbnail
These digital images were taken at select locations over the Potomac River using 3DR Solo unmanned aircraft systems (UAS) in October 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, rededge, and near-infrared), which can be used to classify vegetation, or FLIR Vue Pro R 640 13mm radiometric thermal camera that provides temperature data embedded in every...
thumbnail
U.S. Geological Survey (USGS) scientists completed a multidisciplinary data collection effort during the week of October 21-25, 2019, using new technologies to map and validate bathymetry over a large stretch of the non-tidal Potomac River. The work was initiated as an effort to validate commercially-acquired topobathymetric light detection and ranging (lidar) data funded through a partnership between the USGS and the Interstate Commission on the Potomac River Basin (ICPRB). The goal was to compare airborne lidar data to bathymetric data collected through more traditional means (boat-based sonar, wading Real Time Kinematic Global Navigational Satellite System (RTK-GNSS) surveys) and through unmanned aerial systems...
thumbnail
Panorama with image 812. Potomac River looking west from gap in North Mountain. Williamsport quadrangle. West Virginia. No date.
thumbnail
These digital images were taken over an area of the Potomac River in White's Ferry, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 23, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, rededge, and near-infrared), which can be used to classify vegetation, or FLIR Vue Pro R 640 13mm radiometric thermal camera that provides temperature...
thumbnail
Low-altitude aerial images were taken over an area of the Potomac River in Brunswick, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 22, 2019. The imagery was collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global Navigation Satellite System and/or containing internal post processing kinematic (PPK) GPS system. This data release contains the csv files containing the latitude and longitude coordinates, in Universal Transverse Mercator Zone 18N referenced to the...
thumbnail
These digital images were taken over an area of the Potomac River in Brunswick, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 22, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global Navigation Satellite System and/or containing internal post processing kinematic (PPK) GPS system. This data release...
thumbnail
Biological indicator taxa have long been used for integrative assessments of water quality, particularly benthic invertebrate groups such as arthropods. While standardized protocols have been developed to calculate 'biological index' scores based on the abundances of these taxa, such systems are challenging to implement at large scales due to the sampling effort required, taxonomic expertise needed, and the need for repeated sampling to reliably discriminate sites. Many of the same taxa detected by traditional surveys can also be detected by genetic analysis of environmental DNA (eDNA), potentially allowing for an alternative formulation of biological indexes that might be faster and more economical to produce....
thumbnail
Decades of poor reproductive success and young-of-the-year recruitment, in addition to adult mortality, has led to a decline in the smallmouth bass (SMB) population in subwatersheds of the Potomac River. Previous studies have identified numerous biologic and environmental stressors associated with negative effects on SMB health. To better understand the impact of these stressors, the current study was conducted from 2013-2019 to identify temporal changes associated with SMB reproductive health. Grab surface water samples were collected and analyzed for over 300 organic contaminants, including pesticides, phytoestrogens, pharmaceuticals, hormones and total estrogenicity (E2Eq). Adult SMB were collected and sampled...
thumbnail
These digital images were taken over an area of the Potomac River in Point of Rocks, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 24, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a FLIR Vue Pro R 640 13mm radiometric thermal camera that provides temperature data embedded in every pixel. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global Navigation Satellite System and/or containing internal post processing kinematic (PPK) GPS system. This data release...
thumbnail
These digital images were taken over an area of the Potomac River in Brunswick, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 22, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a FLIR Vue Pro R 640 13mm radiometric thermal camera that provides temperature data embedded in every pixel. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global Navigation Satellite System and/or containing internal post processing kinematic (PPK) GPS system. This data release includes...
thumbnail
Low-altitude digital images were taken over an area of the Potomac River in White's Ferry, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 23, 2019. The imagery was collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global Navigation Satellite System and/or containing internal post processing kinematic (PPK) GPS system. This data release contains the csv files containing the latitude and longitude coordinates, in Universal Transverse Mercator Zone 18N referenced to...
thumbnail
Water-penetrating LiDAR technology was used to remotely sense bathymetric elevation data as part of a spatial data acquisition on the Potomac River. In support of this effort, a bathymetric survey with a boat-mounted acoustic Doppler current profiler (ADCP) was conducted in the study area on October 21-24, 2019. Global Navigational Satellite Systems (GNSS) were used to concurrently collect survey grade real-time kinematic (RTK) horizontal and vertical coordinates of the ADCP transducer face. The riverbed elevations were collected using the ADCP with WinRiverII to export for post-processing in Microsoft Excel and ArcMap. The GNSS equipment was programmed to continuously collect an observation every second and the...
thumbnail
These digital images were taken over an area of the Potomac River in Point of Rocks, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 24, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, rededge, and near-infrared), which can be used to classify vegetation, or FLIR Vue Pro R 640 13mm radiometric thermal camera that provides temperature...
thumbnail
Treated effluent from wastewater treatment plants (WWTPs) contains contaminants not fully removed during the treatment process and that may pose environmental health risks when discharged to surface waters. This data release presents inputs for and results from a wastewater reuse model that used data compiled from several sources to calculate the following estimates for each non-tidal, non-coastline, initialized National Hydrography Dataset Version 2.1 (NHDPlus V2) stream segment in the Potomac River watershed: (1) accumulated wastewater as a percent of total streamflow (ACCWW%); and (2) predicted environmental concentrations (PECs, in micrograms per liter) of 69 municipal effluent-derived contaminants. ACCWW% values...
thumbnail
These digital images were taken over an area of the Potomac River in Point of Rocks, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 24, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, rededge, and near-infrared), which can be used to classify vegetation. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global Navigation Satellite System and/or...
thumbnail
Low-altitude digital images were taken over an area of the Potomac River in Point of Rocks, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 24, 2019. The imagery was collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global Navigation Satellite System and/or containing internal post processing kinematic (PPK) GPS system. This data release contains the csv files containing the latitude and longitude coordinates, in Universal Transverse Mercator Zone 18N referenced...
thumbnail
Note: this data release has been deprecated. Please see new data release here: https://doi.org/10.5066/P9XM3NKD Bathymetric LiDAR technology was used to collect riverbed elevation data along the Potomac River. In support of this effort, a bathymetric survey with a boat-mounted acoustic Doppler current profiler (ADCP) was conducted in the study area during October 4-7, 2021. The study area consisted of four verification reaches on the Potomac River including: 1) Williamsport accessed through the Williamsport Park boat ramp below Conococheague Creek and RTE 11 (Williamsport), 2) Big Slackwater above C&O Canal Dam #4 accessed through the Big Slackwater Boat Ramp (Dam4), 3) Four Locks above C&O Canal Dam #5 accessed...
thumbnail
These digital images were taken over an area of the Potomac River in Shepherdstown, West Virginia using 3DR Solo unmanned aircraft systems (UAS) on October 21, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, or FLIR Vue Pro R 640 13mm radiometric thermal camera that provides temperature data embedded in every pixel. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global...
thumbnail
Low-altitude digital images were taken over an area of the Potomac River in Shepherdstown, West Virginia using 3DR Solo unmanned aircraft systems (UAS) on October 21, 2019. The imagery was collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global Navigation Satellite System and/or containing internal post processing kinematic (PPK) GPS system. This data release contains the csv file containing the latitude and longitude coordinates, in Universal Transverse Mercator Zone 18N referenced...
thumbnail
These digital images were taken over an area of the Potomac River in Shepherdstown, West Virginia using 3DR Solo unmanned aircraft systems (UAS) on October 21, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global Navigation Satellite System and/or containing internal post processing kinematic (PPK) GPS system. This data...


map background search result map search result map Low-altitude aerial imagery from unmanned aerial systems (UAS) at select locations over the Potomac River, October 2019 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in Shepherdstown, West Virginia on October 21, 2019 True color aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in Shepherdstown, West Virginia on October 21, 2019 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in Point of Rocks, Maryland on October 24, 2019 Radiometric thermal aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in Point of Rocks, Maryland on October 24, 2019 Multispectral aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in Point of Rocks, Maryland on October 24, 2019 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in White's Ferry, Maryland on October 23, 2019 True color aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in Brunswick, Maryland on October 22, 2019 Radiometric thermal aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in Brunswick Maryland on October 22, 2019 Ground control points collected during unmanned aerial systems (UAS) flights: Potomac River in Brunswick Maryland on October 22, 2019 Ground control points collected during unmanned aerial systems (UAS) flights: Potomac River in Point of Rocks, Maryland on October 24, 2019 Ground control points collected during unmanned aerial systems (UAS) flights: Potomac River in Shepherdstown, West Virginia on October 21, 2019 Ground control points collected during unmanned aerial systems (UAS) flights: Potomac River in White's Ferry, Maryland on October 23, 2019 Potomac River Topobathymetric Lidar Validation Survey Data Potomac River ADCP Bathymetric Survey, October 2019 Potomac River Watershed Accumulated Wastewater Ratios and Predicted Environmental Concentrations Potomac River ADCP Bathymetric Survey, October 4-7, 2021 Water Chemistry and Smallmouth Bass Biological Data From the Potomac River, Dargan, Maryland, 2013-2019 Metabarcode sequencing of aquatic environmental DNA from the Potomac River Watershed, 2015-2020 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in Point of Rocks, Maryland on October 24, 2019 Radiometric thermal aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in Point of Rocks, Maryland on October 24, 2019 Multispectral aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in Point of Rocks, Maryland on October 24, 2019 Ground control points collected during unmanned aerial systems (UAS) flights: Potomac River in Point of Rocks, Maryland on October 24, 2019 True color aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in Brunswick, Maryland on October 22, 2019 Radiometric thermal aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in Brunswick Maryland on October 22, 2019 Ground control points collected during unmanned aerial systems (UAS) flights: Potomac River in Brunswick Maryland on October 22, 2019 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in Shepherdstown, West Virginia on October 21, 2019 True color aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in Shepherdstown, West Virginia on October 21, 2019 Ground control points collected during unmanned aerial systems (UAS) flights: Potomac River in Shepherdstown, West Virginia on October 21, 2019 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in White's Ferry, Maryland on October 23, 2019 Ground control points collected during unmanned aerial systems (UAS) flights: Potomac River in White's Ferry, Maryland on October 23, 2019 Water Chemistry and Smallmouth Bass Biological Data From the Potomac River, Dargan, Maryland, 2013-2019 Potomac River ADCP Bathymetric Survey, October 4-7, 2021 Potomac River Topobathymetric Lidar Validation Survey Data Potomac River ADCP Bathymetric Survey, October 2019 Low-altitude aerial imagery from unmanned aerial systems (UAS) at select locations over the Potomac River, October 2019 Metabarcode sequencing of aquatic environmental DNA from the Potomac River Watershed, 2015-2020 Potomac River Watershed Accumulated Wastewater Ratios and Predicted Environmental Concentrations