Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: Restoration (X)

1,011 results (15ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Natural landscapes in the Southwestern United States are changing. In recent decades, rising temperatures and drought have led to drier conditions, contributed to large-scale ecological impacts, and affected many plant and animal species across the region. The current and future trajectory of climate change underscores the need for managers and conservation professionals to understand the impacts of these patterns on natural resources. In this regional assessment of the Southwest Climate Change Initiative, we evaluate changes in annual average temperatures from 1951–2006 across major habitats and large watersheds and compare these changes to the number of species of conservation concern that are found within these...
The Integrated Rangeland Fire Management Strategy (hereafter Strategy, DOI 2015) outlined the need for coordinated, science-based adaptive management to achieve long-term protection, conservation, and restoration of the sagebrush (Artemisia spp.) ecosystem. A key component of this management approach is the identification of knowledge gaps that limit implementation of effective strategies to meet current management challenges. The tasks and actions identified in the Strategy address several broad topics related to management of the sagebrush ecosystem. This science plan is organized around these topics and specifically focuses on fire, invasive plant species and their effects on altering fire regimes, restoration,...
thumbnail
The Forest and Rangeland Ecosystem Science Center 's mission is to provide scientific understanding and the technology needed to support sound management and conservation of our nation's natural resources, with emphasis on western ecosystems. The scientists from FRESC capitalize on their diverse expertise to answer critically important scientific questions shaped by the equally diverse environments of the western United States. FRESC scientists collaborate with each other and with partners to provide rigorous, objective, and timely information and guidance for the management and conservation of biological systems in the West and worldwide. Research activities are concentrated in Washington, Oregon, Idaho, Nevada,...
thumbnail
This dataset represents presence of white pine (Pinus strobus) at year 100 (2095) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Contemporary harvest rates and intensities were simulated.
The alien grass Bromus tectorum dominates stable annual-plant communities that have replaced native shrub-perennial grass communities over much of the semi-arid western United States. We conducted field competition experiments between B. tectorum and a native grass, Elymus elymoides, on two sites to determine the effects of B. tectorum competition on perennial grasses, and the role of B. tectorum competition in the stability of B. tectorum-dominated communities. B. tectorum competition acting on seedling-stage E. elymoides plants greatly reduced first-year relative growth rates and biomass which, in turn, reduced second-year survival, biomass, and flowering. However, B. tectorum competition acting on older E. elymoides...
thumbnail
This dataset includes the location and associated summarized temperature and soil moisture values associated with each seedling outplanted in this experiment. Temperature range (Temp.diff) is the average monthly temperature range for the life of the plant and/or experiment. Soil water content (Avg.wc) is the average soil water content for the life of the plant and/or experiment. Each plot and the associated elevation (Elev) are recorded. Each seedling has a unique identifier and all information associated used for data analysis. Survival of each seedling is noted with a 1 (survived) or 0 (died). An index of growth per day, 'slope' is provided for each seedling. Seedlings were planted across eight plots (Plot: A-H)...
thumbnail
Final Report - Executive Summary: This final project report is prepared to summarize the research project titled “Assessing evapotranspiration rate changes for proposed restoration of the forested uplands of the Desert Landscape Conservation Cooperatives (LCC)” for the Desert LCC of the Bureau of Reclamation as a requirement for closing out the project. This report includes the scope of work, summary of research project, results, and conclusions. Among all of the components of the terrestrial water cycle, evapotranspiration (ET) consumes the largest amount of water. Accurate estimation of ET is very important to understand the influence of ET to the hydrologic response of recharge and runoff processes in the water...
thumbnail
This file represents the final version of an assessment of the extent, condition, and distribution of grassland types in Arizona as indicated by expert interviews and field verification. Coverage includes the state of Arizona, Southwestern portions of the state of New Mexico, and the Northern portion of Sonora, Mexico.
thumbnail
This dataset represents presence of Jack Pine (Pinus banksiana) in Minnesota (USA) at year 50 (2045) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Restoration harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Sugar Maple (Acer saccharum) in Minnesota (USA) at year 0 (2145) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Contemporary harvest rates and intensities were simulated.
thumbnail
Vegetation and land-cover changes are not always directional but follow complex trajectories over space and time, driven by changing anthropogenic and abiotic conditions. We present a multi-observational approach to land-change analysis that addresses the complex geographic and temporal variability of vegetation changes related to climate and land use. Using land-ownership data as a proxy for land-use practices, multitemporal land-cover maps, and repeat photography dating to the late 19th century, we examine changing spatial and temporal distributions of two vegetation types with high conservation value in the southwestern United States: grasslands and riparian vegetation. In contrast to many reported vegetation...
thumbnail
Conclusions: In fragmented watersheds, macrohabitat attributes measured at the patch scale were far more effective in predicting trout translocation success than measurements taken at the landscape scale Thresholds/Learnings: As a course filter indicator of cutthroat trout translocation success, the study found that translocations have a greater than 50% chance of fruitful establishment in watersheds >14.7km2 in area. Synopsis: This study aimed to identify stream-scale and basin-scale macrohabitat attributes limiting successful translocation and persistence of native cutthroat trout populations in fragmented landscapes along the Rio Grande. The study developed models of habitat attributes measured at two scales...


map background search result map search result map Minimum habitat requirements for establishing translocated cutthroat trout populations. Minnesota (USA) Climate Change Project: White Pine at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Jack Pine at Year 50 (2045), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Sugar Maple at Year 150 (2145), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Using Beaver for Climate Change and Conservation Benefits Extent and Condition of Grasslands in Arizona, Northern Mexico, and Southwestern New Mexico Managing Changing Landscapes in the Southwestern United States Historical and Contemporary Geographic Data Reveal Complex Spatial and Temporal Responses of Vegetation to Climate and Land Stewardship Survival of seedlings planted along an elevation gradient at Kanakaleonui Bird Corridor, Hawaii, 2016 Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC Survival of seedlings planted along an elevation gradient at Kanakaleonui Bird Corridor, Hawaii, 2016 Historical and Contemporary Geographic Data Reveal Complex Spatial and Temporal Responses of Vegetation to Climate and Land Stewardship Using Beaver for Climate Change and Conservation Benefits Minnesota (USA) Climate Change Project: Sugar Maple at Year 150 (2145), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: White Pine at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Jack Pine at Year 50 (2045), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minimum habitat requirements for establishing translocated cutthroat trout populations. Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC Extent and Condition of Grasslands in Arizona, Northern Mexico, and Southwestern New Mexico Managing Changing Landscapes in the Southwestern United States