Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: Rivers, Streams and Lakes (X)

408 results (40ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­â€ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but managers are challenged by the need to address these threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project sought to provide an example of cooperative landscape decision-making by addressing the conservation of headwater stream ecosystems in the face of climate change at the watershed scale. Predictive models were built for critical resources to examine the effects of the potential alternative actions on the objectives, taking account of climate effects and examining whether there are key uncertainties that impede decision making....
thumbnail
Sport fisheries of lakes are embedded in complex system of ecological and social interactions. The multiple drivers that affect lake sport fisheries, along with the complex interactions within lakes, make it difficult to forecast changes in sport fisheries and plan adaptive responses to build resilience of these important resources. Resilience involves managing with an eye toward critical thresholds for behavior of ecosystems. Project researchers are working to develop quantitative tools for assessment of thresholds in sport fisheries that can be used by management agencies to evaluate potential impacts of climate change mediated through species and habitat interactions. Several outputs of the project will be adaptable...
thumbnail
Streamflow in the Colorado River is heavily influenced by high-elevation snowpack. Warming temperatures in spring can reduce snow-fed flows, with serious implications for the water supplies that support communities and wildlife. While it is already well-known that precipitation has a significant influence on river flow, recent observations suggest that temperature and the amount of water in soil may also influence streamflow. In the face of a changing climate, it is important that resource managers understand how factors such as changing temperatures and precipitation will affect this vital water source. To address this need, researchers are examining records of streamflow, temperature, soil moisture, and precipitation...
thumbnail
The Southeastern U.S. spans broad ranges of physiographic settings and contains a wide variety of aquatic systems that provide habitat for hundreds of endemic aquatic species that pose interesting challenges and opportunities for managers of aquatic resources, particularly in the face of climate change. For example, the Southeast contains the southernmost populations of the eastern brook trout and other cold-water dependent species. Climate change is predicted to increase temperatures in the South and is likely to have a substantial effect on extant populations of cold-water biota. Thus, aquatic managers are tasked with developing strategies for preserving cold-water dependent biota, such as eastern brook trout,...
thumbnail
Water scarcity is a growing concern in Texas, where surface water is derived almost entirely from rainfall. Changes in air temperature and precipitation patterns associated with global climate change are anticipated to regionally affect the quality and quantity of inland surface waters and consequently their suitability as habitat for freshwater life. In addition to directly affecting resident organisms and populations, these changes in physicochemical traits of aquatic habitats may favor the establishment of harmful invasive species. As conflicts over the use of water resources grow in intensity, this information will become important for fish and wildlife managers to anticipate impacts of climate change on trust...
thumbnail
Resource managers, policymakers, and scientists require tools to inform water resource management and planning. Information on hydrologic factors – such as streamflow, snowpack, and soil moisture – is important for understanding and predicting wildfire risk, flood activity, and agricultural and rangeland productivity, among others. Existing tools for modeling hydrologic conditions rely on information on temperature and precipitation. This project sought to evaluate different methods for downscaling global climate models – that is, taking information produced at a global scale and making it useable at a regional scale, in order to produce more accurate projections of temperature and precipitation for the Pacific...
thumbnail
Although climate change is an important factor affecting fish globally, a comprehensive database of how climate change has impacted and will continue to impact inland fishes worldwide does not currently exist. We are conducting an extensive, systematic primary literature review to identify English-language, peer-reviewed journal publications with projected and documented examples of climate change impacts on inland fishes globally. From this standardized database of existing literature, we can examine global patterns in climate change impacts on inland fish. Following a decision path based on knowledge of how climate has been documented to affect fish biology in five main response categories (phenology, distribution,...
thumbnail
Road crossings at rivers and streams can create barriers to the movement of migratory fish when they are improperly designed or constructed. Washington State is home to several threatened species of salmon and trout, including bull trout, and recovery plans for these fish include repairing or replacing culverts that currently block their passage. The state is currently looking to replace approximately 1,000 culverts at an estimated cost of $2.45 billion. As engineers re-design these culverts, which typically have a service life of 50-100 years, it will be important to consider how changing climate conditions will impact streams in the region. Climate change is projected to increase peak streamflows, and therefore...
thumbnail
Throughout its native range in the Eastern U.S., the brook trout is a culturally and economically important species that is sensitive to warming stream temperatures and habitat degradation. The purpose of this assessment was to determine the impacts that projected future land use and climate changes might have on the condition of stream habitat to support self-sustaining brook trout populations. The study region encompassed the historic native range of brook trout, which includes the northeastern states and follows the Appalachian Mountains south to Georgia, where the distribution is limited to higher elevation streams with suitable water temperatures. Relationships between recent observations of brook trout and...
thumbnail
The Jago, Okpilak, and Hulahula rivers in the Arctic are heavily glaciated waterways that are important for fish and wildlife as well as human activities including the provision of food, recreation, and, potentially, resource extraction on the coastal plain. If current glacial melting trends continue, most of the ice in these rivers will disappear in the next 50-100 years. Because of their importance to human and natural communities, it is critical to understand how these rivers and their surrounding environments will be affected by climate change and glacier loss. The overarching goal of this project is to research (1) the amount of river water, sediment, nutrients, and organic matter in the Jago, Okpilak, and...
thumbnail
Changes in stream temperature can have significant impacts on water quality and the health and survival of aquatic fish and wildlife. Water managers, planners, and decision makers are in need of scientific data to help them prepare for and adapt to changes and conserve important resources. Scientists are tasked with ensuring that this data is produced in useful formats and is accessible to these stakeholders. In October 2015, project researchers hosted and facilitated a 1.5 day workshop, “Data Storage, Dissemination and Harvesting”, that brought together over 50 stakeholders from state and federal agencies, tribal governments, universities, and non-profit organizations interested in monitoring stream temperature...
Abstract: A significant number of historically existing wetlands that naturally stored rainwater and attenuated flood peaks have now been drained and employed as new farming areas. Beyond the water quality and flow problem, this has resulted in loss of natural habitats of diverse ecological species. Restoring wetlands have hence been proposed as a potential conservation strategy to help attenuate many of these problems. In this study a spatial, multi-objective optimization study of new potential wetlands was carried out to achieve biodiversity improvements in addition to flood reduction benefits and water quality improvements. The Soil and Water Assessment Tool (SWAT) was used to simulate flow and water quality,...
This Project Snapshot provides a brief overview of the project "Development of Statistical Methods to Estimate Baseline and Future Low Flow Characteristics of Ungaged Streams in Hawai`i".
thumbnail
The percentage difference between mean modeled snow-water-equivalent (meters) on April 1 for the reference (1989-2011) climate period and mean modeled snow-water-equivalent on April 1 for the T4 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
Mean modeled snow-water-equivalent (meters) on February 20, the date of peak basin-integrated mean modeled snow-water-equivalent (meters) for the T4 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data...
This code computes the analytical solution for the damping of sinusoidal infiltration in variably saturated soils described by Bakker and Neiber (2009) and implemented by Dickinson et al. (2014). The usage of the code is documented in the appendix of Dickinson et al. (2014). Bakker, M., Nieber, J.L., 2009. Damping of sinusoidal surface flux fluctuations with soil depth. Vadose Zone J. 8, 119–126,http://dx.doi.org/10.2136/vzj2008.0084. Dickinson, J.E., Ferré, T.P.A., Bakker, M., Crompton, B., 2014. A screening tool for delineating subregions of steady recharge within groundwater models.Vadose Zone J. 13, 15, http://dx.doi.org/10.2136/vzj2013.10.0184. The code can be obtained at http://az.water.usgs.gov/software/damp.html
Abstract (from Wiley Online Library): Annual distributions of waterfowl during the nonbreeding period can influence ecological, cultural, and economic relationships. We used previously developed Weather Severity Indices (WSI) that explained migration by dabbling ducks in eastern North America and weather data from the North American Regional Reanalysis to develop an open-access internet-based tool (i.e., WSI web app) to visualize and query WSI data. We used data generated by the WSI web app to determine whether the weather known to elicit southerly migration by dabbling ducks had changed, from October to April 1979 to 2013. We detected that the amount of area in the Mississippi and Atlantic Flyways with weather...


map background search result map search result map Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities Improving Projections of Hydrology in the Pacific Northwest USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems based on Future Climate Projections The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic Projected Vulnerability of Brook Trout to Climate and Land Use Changes in the Eastern U.S. (Regional Assessment) Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Climate Change and Resilience of Sport Fisheries in Lakes Modeled snow-water-equivalent, percent difference between historical and projected April 1 values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Systematic Literature Review of Climate Change Impacts to Inland Fishes Prioritizing Stream Temperature Data Collection to Meet Stakeholder Needs and Inform Regional Analyses Climate Projections for use in Stream Restoration and Culvert Design in Washington State Modeled snow-water-equivalent, percent difference between historical and projected April 1 values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic Climate Projections for use in Stream Restoration and Culvert Design in Washington State Climate Change and Resilience of Sport Fisheries in Lakes Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities Improving Projections of Hydrology in the Pacific Northwest Projected Vulnerability of Brook Trout to Climate and Land Use Changes in the Eastern U.S. (Regional Assessment) USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems based on Future Climate Projections Prioritizing Stream Temperature Data Collection to Meet Stakeholder Needs and Inform Regional Analyses Systematic Literature Review of Climate Change Impacts to Inland Fishes