Skip to main content
Advanced Search

Filters: Tags: Rivers, Streams and Lakes (X) > Date Range: {"choice":"month"} (X)

133 results (72ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Future climate conditions in the Upper Mississippi River Basin are projected to include many more extreme precipitation events. These intense periods of rain can lead to flooding of the Mississippi River itself, as well the small streams and rivers that feed it. This flooding presents a challenge for local communities, farmers, small businesses, river users, and the ecosystems and wildlife in the area. To reduce the damage done by these extreme rainfall events, ‘natural solutions’ are often helpful. This might include preserving forests and grasslands to absorb rainwater before it arrives at streams or restoring wetlands to slow and clean runoff water. For river and natural resource managers to adapt to future climate...
thumbnail
The Midwest has experienced some of the costliest flooding events in U.S. history, including many billions of dollars during the past decade alone. The Midwest’s susceptibility to flooding has been exacerbated by a long-term increase in total precipitation and extreme rainfalls, with the 2010s being the region’s wettest decade on record Climate models strongly indicate that these recent trends will continue, such that the warming Midwest will experience wetter winters and springs, shortened snow seasons, and extreme year-round precipitation in the future. Despite this high level of confidence in climate trends, there is limited knowledge of how these will translate to flood likelihood and the associated societal...
thumbnail
Streamflow in the Colorado River is heavily influenced by high-elevation snowpack. Warming temperatures in spring can reduce snow-fed flows, with serious implications for the water supplies that support communities and wildlife. While it is already well-known that precipitation has a significant influence on river flow, recent observations suggest that temperature and the amount of water in soil may also influence streamflow. In the face of a changing climate, it is important that resource managers understand how factors such as changing temperatures and precipitation will affect this vital water source. To address this need, researchers are examining records of streamflow, temperature, soil moisture, and precipitation...
thumbnail
In the Western U.S., approximately 65% of the water supply comes from forested regions with most of the water that feeds local rivers coming from snowmelt that originates in mountain forests. The Rio Grande headwaters (I.e. the primary water generating region of the Rio Grande river) is experiencing large changes to the landscape primarily from forest fires and bark beetle infestations. Already, 85% of the coniferous forests in this region have been affected by the bark beetle, and projections indicate greater changes will occur as temperatures increase. In this area, most of the precipitation falls as snow in the winter, reaches a maximum depth in the late spring, and melts away due to warmer temperatures by early...
thumbnail
Sport fisheries of lakes are embedded in complex system of ecological and social interactions. The multiple drivers that affect lake sport fisheries, along with the complex interactions within lakes, make it difficult to forecast changes in sport fisheries and plan adaptive responses to build resilience of these important resources. Resilience involves managing with an eye toward critical thresholds for behavior of ecosystems. Project researchers are working to develop quantitative tools for assessment of thresholds in sport fisheries that can be used by management agencies to evaluate potential impacts of climate change mediated through species and habitat interactions. Several outputs of the project will be adaptable...
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
Small lakes are important to local economies as sources of water supply and places of recreation. Commonly, lakes are considered more desirable for recreation if they are free of the thick weedy vegetation, often comprised of invasive species, that grows around the lake edge. This vegetation makes it difficult to launch boats and swim. In order to reduce this vegetation, a common technique in the Northeast and Midwest U.S. is a ‘winter drawdown’ . In a winter drawdown, the lake level is artificially lowered (via controls in a dam) during the winter to expose shoreline vegetation to freezing conditions, thereby killing them and preserving recreational value of the lake. However, this practice can impact both water...
thumbnail
There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but managers are challenged by the need to address these threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project sought to provide an example of cooperative landscape decision-making by addressing the conservation of headwater stream ecosystems in the face of climate change at the watershed scale. Predictive models were built for critical resources to examine the effects of the potential alternative actions on the objectives, taking account of climate effects and examining whether there are key uncertainties that impede decision making....
thumbnail
The Southeastern U.S. spans broad ranges of physiographic settings and contains a wide variety of aquatic systems that provide habitat for hundreds of endemic aquatic species that pose interesting challenges and opportunities for managers of aquatic resources, particularly in the face of climate change. For example, the Southeast contains the southernmost populations of the eastern brook trout and other cold-water dependent species. Climate change is predicted to increase temperatures in the South and is likely to have a substantial effect on extant populations of cold-water biota. Thus, aquatic managers are tasked with developing strategies for preserving cold-water dependent biota, such as eastern brook trout,...
thumbnail
Water scarcity is a growing concern in Texas, where surface water is derived almost entirely from rainfall. Changes in air temperature and precipitation patterns associated with global climate change are anticipated to regionally affect the quality and quantity of inland surface waters and consequently their suitability as habitat for freshwater life. In addition to directly affecting resident organisms and populations, these changes in physicochemical traits of aquatic habitats may favor the establishment of harmful invasive species. As conflicts over the use of water resources grow in intensity, this information will become important for fish and wildlife managers to anticipate impacts of climate change on trust...
thumbnail
Throughout its native range in the Eastern U.S., the brook trout is a culturally and economically important species that is sensitive to warming stream temperatures and habitat degradation. The purpose of this assessment was to determine the impacts that projected future land use and climate changes might have on the condition of stream habitat to support self-sustaining brook trout populations. The study region encompassed the historic native range of brook trout, which includes the northeastern states and follows the Appalachian Mountains south to Georgia, where the distribution is limited to higher elevation streams with suitable water temperatures. Relationships between recent observations of brook trout and...
thumbnail
Inland fishes provide important ecosystem services to communities worldwide and are especially vulnerable to the impacts of climate change. Fish respond to climate change in diverse and nuanced ways, which creates challenges for practitioners of fish conservation, climate change adaptation, and management. Although climate change is known to affect fish globally, a comprehensive online, public database of how climate change has impacted inland fishes worldwide and adaptation or management practices that may address these impacts does not exist. We conducted an extensive, systematic primary literature review to identify peer-reviewed journal publications describing projected and documented examples of climate change...
thumbnail
USFWS Landscape Conservation Cooperatives (LCCs) throughout the Mississippi River Basin (MRB) have identified high nutrient runoff, a major contributor to Gulf hypoxia, and declines in wildlife populations (especially grassland and riparian birds), as conservation challenges requiring collaborative action. This project aimed to develop a spatial decision support system (DSS) to address these issues. The DSS was designed to identify MRB watersheds where application of conservation practices can (1) reduce nutrient export to the Gulf hypoxia zone and (2) enhance conservation for grassland and riparian birds, based on (3) identifying landowners willing and capable of implementing these practices. The DSS is expected...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2014, Bird Conservation, Birds, Birds, Birds, All tags...
thumbnail
Recently intensifying drought conditions have caused increased stress to non-native tamarisk vegetation across riparian areas of the San Carlos Apache Tribe (hereafter Tribe) and the Upper Gila River watershed in Arizona and New Mexico. This also increases wildfire risk in the area, making the removal of tamarisk vegetation a primary restoration and climate adaptation objective for the Tribe. The research from this project can improve the Tribe’s capacity to map tamarisk and other riparian vegetation, in addition to monitoring the relative condition and water stress of the vegetation in a timely manner. Specifically, the project will help identify where tamarisk is on the reservation and inform restoration actions...
thumbnail
The Science Issue and Relevance: Coastal wetlands are some of the most productive and valuable habitats in the world. Louisiana contains 40% of the United States’ coastal wetlands, which provide critical habitat for waterfowl and fisheries, as well as many other benefits, such as storm surge protection for coastal communities. In terms of ecosystem services, biological resource production, and infrastructure investments, the value of Louisiana’s coastal wetlands exceeds $100 billion. Thus, stakeholders are gravely concerned about sea-level rise which is causing coastal marsh habitat to convert to open water and resulting in the highest rates of wetland loss in the world, with nearly 1.2 million acres lost since...
thumbnail
The Rio Grande cutthroat trout is New Mexico’s state fish; but habitat loss and non-native trout invasions threaten the persistence of this fish throughout the remaining 12% of its historic range. Stakeholders, including state agencies, federal agencies, Tribal nations, Pueblos, and private groups are particularly concerned about the impact that non-native brown trout have on native cutthroat trout. This project will be the first to demonstrate how non-native brown trout negatively affect Rio Grande cutthroat trout populations. The project has two primary objectives: 1) compare the health and characteristics of native Rio Grande Cutthroat Trout in areas both with and without invasive brown trout in cold and warm...
thumbnail
The Rio Grande River is a critical source of freshwater for 13 million people in Colorado, Texas, New Mexico, and Mexico. More than half of the Rio Grande’s streamflow originates as snowmelt in Colorado’s mountains, meaning that changes in the amount of snowmelt can impact the water supply for communities along the entire river. Snowmelt runoff is therefore an important component of water supply outlooks for the region, which are used by a variety of stakeholders to anticipate water availability in the springtime. It is critical that these water supply outlooks be as accurate as possible. Errors can cost states millions of dollars due to mis-allocation of water and lost agricultural productivity. There is a perception...
thumbnail
Climate change is causing species to shift their phenology, or the timing of recurring life events such as migration and spawning, in variable and complex ways. This can potentially result in mismatches or asynchronies in food and habitat resources that negatively impact individual fitness, population dynamics, and ecosystem function. Numerous studies have evaluated phenological shifts in terrestrial species, particularly birds and plants, yet far fewer evaluations have been conducted for marine animals. This project sought to improve our understanding of shifts in the timing of seasonal migration, spawning or breeding, and biological development (i.e. life stages present, dominant) of coastal fishes and migratory...
thumbnail
Cold-water adapted Brook Trout were historically widely distributed – ranging from northern Quebec to Georgia, and from the Atlantic Ocean to Manitoba in the north, and along the Appalachian ridge in the south. However, studies show that due to factors associated with climate change, such as increased stream temperature and changing water flow, the number of streams containing Brook Trout is declining. Although efforts have been made to protect and restore this cold-water fish at local levels, the extent that temperature increases will vary within and across different streams and the ability of Brook Trout to seek cold-water refugia or adapt to these increasing stream temperatures currently remains unclear. The...
thumbnail
The amount of water flowing through a stream is an important driver of aquatic habitat, but scientists don’t often measure streamflow in the small stream networks that feed larger rivers. Monitoring smaller streams is especially important as climate change is causing them to (a) flood more often and more intensely, and (b) lose habitat as drought events and water temperatures increase. A better understanding of the changing patterns of flow and temperatures in small streams can help decision makers evaluate which streams will provide suitable habitat for plants and animals under a changing climate. Specific goals of this project are to 1) understand how water flow and temperature interact in small streams and 2)...


map background search result map search result map Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections Evaluating the Use of Models for Projecting Future Water Flow in the Southeast Projected Vulnerability of Brook Trout to Climate and Land Use Changes in the Eastern U.S. (Regional Assessment) Projecting the Future of Headwater Streams to Inform Management Decisions Science to Assess Future Conservation Practices for the Mississippi River Basin Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Climate Change and Resilience of Sport Fisheries in Lakes Implications of Future Shifts in Migration, Spawning, and Other Life Events of Coastal Fish and Wildlife Species Fish and Climate Change (FiCli) Database: Informing Climate Change Adaptation and Management Actions for Freshwater Fishes Developing Tools for Improved Water Supply Forecasting in the Rio Grande Headwaters Susceptibility of Rio Grande Cutthroat Trout to Displacement by Non-Native Brown Trout and Implications for Future Management Understanding Brook Trout Persistence in Warming Streams Rethinking Lake Management for Invasive Plants Under Future Climate: Sensitivity of Lake Ecosystems to Winter Water Level Drawdowns Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat Estimating the Future Effects of Forest Disturbance on Snow Water Resources in a Changing Environment Workshop: Natural Solutions to Ecological and Economic Problems Caused by Extreme Precipitation Events in the Upper Mississippi River Basin The Combined Effects of Seasonal Climate and Extreme Precipitation on Flood Hazard in the Midwest Integrating Streamflow and Temperature to Identify Streams with Coldwater Refugia in the Northeast Mapping Riparian Vegetation Response to Climate Change on the San Carlos Apache Reservation and Upper Gila River Watershed to Inform Restoration Priorities: 1935 to Present (Phase 2) Developing Tools for Improved Water Supply Forecasting in the Rio Grande Headwaters Understanding Brook Trout Persistence in Warming Streams Mapping Riparian Vegetation Response to Climate Change on the San Carlos Apache Reservation and Upper Gila River Watershed to Inform Restoration Priorities: 1935 to Present (Phase 2) Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat Climate Change and Resilience of Sport Fisheries in Lakes Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities Implications of Future Shifts in Migration, Spawning, and Other Life Events of Coastal Fish and Wildlife Species Workshop: Natural Solutions to Ecological and Economic Problems Caused by Extreme Precipitation Events in the Upper Mississippi River Basin The Combined Effects of Seasonal Climate and Extreme Precipitation on Flood Hazard in the Midwest Susceptibility of Rio Grande Cutthroat Trout to Displacement by Non-Native Brown Trout and Implications for Future Management Integrating Streamflow and Temperature to Identify Streams with Coldwater Refugia in the Northeast Projected Vulnerability of Brook Trout to Climate and Land Use Changes in the Eastern U.S. (Regional Assessment) USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections Rethinking Lake Management for Invasive Plants Under Future Climate: Sensitivity of Lake Ecosystems to Winter Water Level Drawdowns Projecting the Future of Headwater Streams to Inform Management Decisions Evaluating the Use of Models for Projecting Future Water Flow in the Southeast Science to Assess Future Conservation Practices for the Mississippi River Basin Fish and Climate Change (FiCli) Database: Informing Climate Change Adaptation and Management Actions for Freshwater Fishes