Skip to main content
Advanced Search

Filters: Tags: Rocky Mountains (X)

214 results (38ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
Willow communities dominate mid-elevation riparian areas throughout the Rocky Mountains of North America. However, many willow stands are rapidly declining in aerial cover and individual plants in stature. A poor understanding of the processes that control willow establishment hinders identifying the causes of this decline. We analysed the processes that have facilitated or limited willow establishment over the last half of the 20th century on two large floodplains in Rocky Mountain National Park in Colorado by addressing two questions: (1) How does hydrologic regime control willow establishment on different fluvial landforms? (2) How might climate-driven variations in hydrologic regime affect future willow establishment?...
The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7 kg ha−1 yr−1 of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but data from the National Atmospheric Deposition Program and Clean Air Status and Trends Network show no region-wide increase during the past 2 decades. Nitrogen loads in atmospheric wet deposition have increased since the mid-1980s, however, at three high elevation (>3000 m) sites east of the Continental Divide in the Front Range. Much of this increase...
Seasonal snowpack chemistry data from the Rocky Mountain region of the US was examined to identify long-term trends in concentration and chemical deposition in snow and in snow-water equivalent. For the period 1993?2004, comparisons of trends were made between 54 Rocky Mountain Snowpack sites and 16 National Atmospheric Deposition Program wetfall sites located nearby in the region. The region was divided into three subregions: Northern, Central, and Southern. A non-parametric correlation method known as the Regional Kendall Test was used. This technique collectively computed the slope, direction, and probability of trend for several sites at once in each of the Northern, Central, and Southern Rockies subregions....
thumbnail
Establishing connections among natural landscapes is the most frequently recommended strategy for adapting management of natural resources in response to climate change. The U.S. Northern Rockies still support a full suite of native wildlife, and survival of these populations depends on connected landscapes. Connected landscapes support current migration and dispersal as well as future shifts in species ranges that will be necessary for species to adapt to our changing climate. Working in partnership with state and federal resource managers and private land trusts, we sought to: 1) understand how future climate change may alter habitat composition of landscapes expected to serve as important connections for wildlife,...
This data release provides inputs needed to run the LANDIS-II landscape change model, NECN and Base Fire extensions for the Greater Yellowstone Ecosystem (GYE), USA, and simulation results that underlie figures and analysis in the accompanying publication. We ran LANDIS-II simulations for 112 years, from 1988-2100, using interpolated weather station data for 1988-2015 and downscaled output from 5 general circulation models (GCMs) for 2016-2100. We also included a control future scenario with years drawn from interpolated weather station data from 1980-2015. Model inputs include raster maps (250 × 250 m grid cells) of climate regions and tables of monthly temperature and precipitation for each climate region. We...
thumbnail
This dataset includes the magnetotelluric (MT) sounding data collected in 2007 in and near the San Luis Valley, Colorado. The U.S. Geological Survey conducted a series of multidisciplinary studies, including MT surveys, in the San Luis Valley to improve understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits comprising the principal groundwater aquifers of the Rio Grande rift. The shallow unconfined and the deeper confined Santa Fe Group aquifers in the San Luis Basin are the main sources of municipal water for the region. The population of the San Luis Valley region is growing rapidly and water shortfalls could have serious consequences. Future growth and land management...
thumbnail
This dataset includes the magnetotelluric (MT) sounding data collected in 2007 in and near the San Luis Valley, Colorado. The U.S. Geological Survey conducted a series of multidisciplinary studies, including MT surveys, in the San Luis Valley to improve understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits comprising the principal groundwater aquifers of the Rio Grande rift. The shallow unconfined and the deeper confined Santa Fe Group aquifers in the San Luis Basin are the main sources of municipal water for the region. The population of the San Luis Valley region is growing rapidly and water shortfalls could have serious consequences. Future growth and land management...
thumbnail
The RCMAP (Rangeland Condition Monitoring Assessment and Projection) dataset quantifies the percent cover of rangeland components across the western U.S. using Landsat imagery from 1985-2020. The RCMAP product suite consists of eight fractional components: annual herbaceous, bare ground, herbaceous, litter, non-sagebrush shrub, perennial herbaceous, sagebrush, shrub and rule-based error maps including the temporal trends of each component. Several enhancements were made to the RCMAP process relative to prior generations. We used an updated version of the 2016 base training data, with a more aggressive forest mask and reduced shrub and sagebrush cover bias in pinyon-juniper woodlands. We pooled training data in areas...
Tags: AZ, Arizona, Arizona Plateau, Black Hills, Blue Mountains, All tags...
thumbnail
The RCMAP (Rangeland Condition Monitoring Assessment and Projection) dataset quantifies the percent cover of rangeland components across the western U.S. using Landsat imagery from 1985-2020. The RCMAP product suite consists of eight fractional components: annual herbaceous, bare ground, herbaceous, litter, non-sagebrush shrub, perennial herbaceous, sagebrush, shrub and rule-based error maps including the temporal trends of each component. Several enhancements were made to the RCMAP process relative to prior generations. We used an updated version of the 2016 base training data, with a more aggressive forest mask and reduced shrub and sagebrush cover bias in pinyon-juniper woodlands. We pooled training data in areas...
Tags: AZ, Arizona, Arizona Plateau, Black Hills, Blue Mountains, All tags...
thumbnail
The RCMAP (Rangeland Condition Monitoring Assessment and Projection) dataset quantifies the percent cover of rangeland components across western North America using Landsat imagery from 1985-2023. The RCMAP product suite consists of ten fractional components: annual herbaceous, bare ground, herbaceous, litter, non-sagebrush shrub, perennial herbaceous, sagebrush, shrub, tree, and shrub height in addition to the temporal trends of each component. Several enhancements were made to the RCMAP process relative to prior generations. First, high-resolution training was revised using an improved neural-net classifier and modelling approach. These data serve as foundation to the RCMAP approach. The training database was...
Tags: AB, AZ, Alberta, Arizona, Arizona Plateau, All tags...
thumbnail
Climate change over the past century has altered vegetation community composition and species distributions across rangelands in the western United States. The scale and magnitude of climatic influences are largely unknown. While a number of studies have projected the impacts of climate change using several modeling approaches, none has evaluated impacts to fractional component cover at a 30-m resolution across rangelands of the Western U.S. We used fractional component cover data for rangeland functional groups and weather data from the 1985 to 2021 reference period in conjunction with soils and topography data to develop empirical models describing the spatio-temporal variation in component cover. To investigate...
Tags: AZ, Arizona, Arizona Plateau, Black Hills, Blue Mountains, All tags...
thumbnail
Post-fire shifts in vegetation composition will have broad ecological impacts. However, information characterizing post-fire recovery patterns and their drivers are lacking over large spatial extents. In this analysis we used Landsat imagery collected when snow cover (SCS) was present, in combination with growing season (GS) imagery, to distinguish evergreen vegetation from deciduous vegetation. We sought to (1) characterize patterns in the rate of post-fire, dual season Normalized Difference Vegetation Index (NDVI) across the region, (2) relate remotely sensed patterns to field-measured patterns of re-vegetation, and (3) identify seasonally-specific drivers of post-fire rates of NDVI recovery. Rates of post-fire...
thumbnail
This dataset includes the magnetotelluric (MT) sounding data collected in 2006 in the Southern San Luis Valley, Colorado. The U.S. Geological Survey conducted a series of multidisciplinary studies, including MT surveys, in the San Luis Valley to improve understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits comprising the principal groundwater aquifers of the Rio Grande rift. The shallow unconfined and the deeper confined Santa Fe Group aquifers in the San Luis Basin are the main sources of municipal water for the region. The population of the San Luis Valley region is growing rapidly and water shortfalls could have serious consequences. Future growth and land management...
thumbnail
This dataset includes the magnetotelluric (MT) sounding data collected in 2006 in the Southern San Luis Valley, Colorado. The U.S. Geological Survey conducted a series of multidisciplinary studies, including MT surveys, in the San Luis Valley to improve understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits comprising the principal groundwater aquifers of the Rio Grande rift. The shallow unconfined and the deeper confined Santa Fe Group aquifers in the San Luis Basin are the main sources of municipal water for the region. The population of the San Luis Valley region is growing rapidly and water shortfalls could have serious consequences. Future growth and land management...
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
thumbnail
The coverage denotes areas which are known boundaries for coal development sites.
Pollen and plant macrofossils from the Keystone Ironbog are used to document changes in species composition and the dynamics of the subalpine forest in western Colorado over the past 8000 years. Modern pollen spectra (particularly pollen influx), plant macrofossils, observations on modern species composition, and quantified densities and mean basal areas of forest trees are used to interpret the paleoecology of the forest. From 8000 to 2600 years ago the fen was surrounded by a subalpine forest. However, unlike the modern subalpine forest where Abies lasiocarpa (Hooker) Nuttall is slightly more abundant than Picea engelmannii (Parry) Engelmann, these Holocene forests had a greater dominance of P. engelmannii, perhaps...


map background search result map search result map Coal Developement Sites - Known Boundaries for the BLM Rawlins Field Office, Wyoming at 1:24,000 Magnetotelluric data, Southern San Luis Valley, Colorado, 2006: Station 16 Magnetotelluric data, Southern San Luis Valley, Colorado, 2006: Station 17 Magnetotelluric sounding data, station 24, San Luis Valley, Colorado, 2007 Magnetotelluric sounding data, station 44, San Luis Valley, Colorado, 2007 Potential climate change impacts on shrub connectivity in the U.S. Northern Rockies Station_rgr118 Station_rgr309 Station_rgr310 Station_rgr315 Landscape inputs and simulation output for the LANDIS-II model in the Greater Yellowstone Ecosystem Data release for tracking rates of post-fire conifer regeneration distinct from deciduous vegetation recovery across the western U.S. Rangeland Condition Monitoring Assessment and Projection (RCMAP) Fractional Component Time-Series Across the Western U.S. 1985-2020 - Annual Herbaceous Rangeland Condition Monitoring Assessment and Projection (RCMAP) Fractional Component Time-Series Across the Western U.S. 1985-2020 - Shrub Projections of Rangeland Fractional Component Cover Across Western US Rangelands for Representative Concentration Pathways (RCP) 4.5 and 8.5 Scenarios for the 2020s, 2050s, and 2080s Time-Periods Rangeland Condition Monitoring Assessment and Projection (RCMAP) Trends Fractional Component Time-Series Across Western North America from 1985-2023 Coal Developement Sites - Known Boundaries for the BLM Rawlins Field Office, Wyoming at 1:24,000 Landscape inputs and simulation output for the LANDIS-II model in the Greater Yellowstone Ecosystem Potential climate change impacts on shrub connectivity in the U.S. Northern Rockies Data release for tracking rates of post-fire conifer regeneration distinct from deciduous vegetation recovery across the western U.S. Rangeland Condition Monitoring Assessment and Projection (RCMAP) Trends Fractional Component Time-Series Across Western North America from 1985-2023 Projections of Rangeland Fractional Component Cover Across Western US Rangelands for Representative Concentration Pathways (RCP) 4.5 and 8.5 Scenarios for the 2020s, 2050s, and 2080s Time-Periods Rangeland Condition Monitoring Assessment and Projection (RCMAP) Fractional Component Time-Series Across the Western U.S. 1985-2020 - Annual Herbaceous Rangeland Condition Monitoring Assessment and Projection (RCMAP) Fractional Component Time-Series Across the Western U.S. 1985-2020 - Shrub