Skip to main content
Advanced Search

Filters: Tags: SAMBI (X)

2 results (10ms)   

View Results as: JSON ATOM CSV
In the Southeastern U.S. rapid urbanization is a major challenge to developing long-term conservation strategies. The SAMBI DSL project used predicted urban growth models described herein to inform future landscape conditions that were also based climate change impacts and vegetative community succession. These future landscape conditions were then applied as a context for land use and management decisions in conservation planning. SLEUTH, named for the model input datasets (Slope, Land use, Excluded, Urban, Transportation and Hillshade) is the evolutionary product of the Clarke Urban Growth Model that uses cellular automata, terrain mapping and land cover change modeling to address urban growth (Jantz et al, 2009;...
In the Southeastern U.S. rapid urbanization is a major challenge to developing long-term conservation strategies. The SAMBI DSL project used predicted urban growth models described herein to inform future landscape conditions that were also based climate change impacts and vegetative community succession. These future landscape conditions were then applied as a context for land use and management decisions in conservation planning. SLEUTH, named for the model input datasets (Slope, Land use, Excluded, Urban, Transportation and Hillshade) is the evolutionary product of the Clarke Urban Growth Model that uses cellular automata, terrain mapping and land cover change modeling to address urban growth (Jantz et al, 2009;...