Filters: Tags: SEAWAT (X)
9 results (10ms)
Filters
Date Range
Contacts
Tag Types Tag Schemes |
![]() A three-dimensional, variable-density solute-transport model (SEAWAT) was developed to examine causes of saltwater intrusion and predict the effects of future alterations to the hydrologic system on salinity distribution in eastern Broward County, Florida. The model was calibrated to conditions from 1970 to 2012, the period for which data are most complete and reliable, and was used to simulate historical conditions from 1950 to 2012. The model was used to (1) evaluate the sensitivity of the salinity distribution in groundwater to sea-level rise and groundwater pumping , and (2) simulate the potential effects of increases in pumping, variable rates of sea-level rise, movement of a salinity control structure, and...
![]() The Biscayne and Southern Everglades Coastal Transport(BISECT) model combines a three-dimensional groundwater model with a two- dimensional hydrodynamic surface-water model with variable-density solute-transport. BISECT was constructed by combining two existing models, Tides and Inflows to the Mangrove Everglades (TIME) (https://doi.org/10.3133/sir20075010), and Biscayne (https://doi.org/10.3133/sir20125099), and modifying the Flow and Transport in a Linked Overland/Aquifer Density-Dependent System (FTLOADDS) simulator (https://doi.org/10.1016/j.jhydrol.2005.04.015) to include spatially variations in the solar radiation reflected back into the atmosphere from the Earth’s surface (albedo) to improve model results....
![]() The previously developed Biscayne and Southern Everglades Coastal Transport (BISECT) model, which combines a three-dimensional groundwater model with a two-dimensional hydrodynamic surface-water model with variable-density solute-transport (https://doi.org/10.3133/sir20195045), was used to evaluate the hydrologic response to historical and hypothesized modern hurricane strikes. Simulations were implemented using FTLOADDS (Flow and Transport in a Linked Overland/Aquifer Density-Dependent System) which is a coupled hydrodynamic surface-water and groundwater simulator that was developed by the U. S. Geological Survey to improve understanding of the complex and interconnected hydrology in South Florida. A simulation...
![]() A modified version of SEAWAT was used in a study by the USGS and the Miami-Dade Water and Sewer Department to simulate effluent injection into the Boulder Zone and groundwater flow and effluent transport in the Floridan aquifer system. The Miami-Dade Water and Sewer Department injects nonhazardous, secondarily treated, domestic wastewater (effluent) into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant, in southeastern Florida. Effluent injection into the Boulder Zone began in June 1997 and was first detected outside the Boulder Zone in the overlying Avon Park permeable zone in May 1998. The Department has detected injected effluent outside the Boulder Zone at six...
![]() The U.S. Geological Survey, in cooperation with the U.S. Department of the Navy, developed several 3-D groundwater flow models for used with MODFLOW-2005, MODFLOW-NWT, and SEAWAT model codes to evaluate variable-density groundwater flow and contaminant transport in Operable Unit 1 on Naval Base Kitsap in Keyport, Washington. Chlorinated volatile organic compounds (CVOCs) have migrated to groundwater beneath a former 9-acre landfill at Operable Unit 1 (OU-1). The three predominant ground-water contaminants are the chloroethene compounds trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE), and vinyl chloride (VC). A need for remedial action was identified because some of the contaminants present a potential risk...
![]() Three groundwater flow models, using MODFLOW-2000, SEAWAT, and SHARP model codes, were used to evaluate plans to supply potable and non-potable water to residents and businesses of Cape May County, New Jersey until at least 2050. The ideal plan would meet projected demands and minimize adverse effects on currently used sources of potable, non- potable, and ecological water supplies. The U.S. Geological Survey used two previously developed groundwater flow models, as well as a newly developed groundwater flow model, to evaluate the shallow and deep aquifer systems in Cape May County. The groundwater flow in the shallow and deep aquifer systems of Cape May County were simulated separately. Flow in the shallow aquifers...
![]() An updated three-dimensional, groundwater-flow and chloride-transport model (SEAWAT) of the Southern Hills regional aquifer system in southeastern Louisiana and southwestern Mississippi was developed to examine the effects of groundwater withdrawals on the rate and pathways of saltwater migration in the “1,500-foot” sand, “2,400-foot” sand, and “2,800-foot” sand. New interpretations of stratigraphic correlations amongst geophysical well logs were utilized to revise a hydrogeologic-framework that delineates the depth and thickness variations of aquifers and confining units in the Southern Hills regional aquifer system. Regional groundwater flow throughout the Southern Hills regional aquifer system was first simulated...
![]() The city of Santa Barbara, in cooperation with the U.S. Geological Survey (USGS) California Water Science Center, developed a three-dimensional density-dependent groundwater-flow and solute-transport model (the Santa Barbara Flow and Transport Model, or SBFTM), based on an existing groundwater-flow model, to simulate seawater intrusion into the Santa Barbara basin under various management strategies. In 2014, California adopted historic legislation to manage its groundwater: the Sustainable Groundwater Management Act (SGMA). Santa Barbara is interested in developing a better understanding of the sustainability of its groundwater supplies to avoid undesirable results: significant and unreasonable groundwater-level...
![]() Three existing groundwater flow models, using MODFLOW-2000, SEAWAT, and SHARP model codes, were used by the U.S. Geological Survey (USGS) to determine the effects of increased withdrawals, and shifts of withdrawals between 2 aquifers, on the limited water resources in the Cape May County, New Jersey. Saltwater intrusion and declining water levels have been a water-supply problem in Cape May County for decades. Several communities in the county have only one aquifer from which freshwater withdrawals can be made, and that sole source is threatened by saltwater intrusion and (or) substantial declines in water levels caused by groundwater withdrawals. Growth of the year-around and summer tourism populations have caused...
|
![]() |