Skip to main content
Advanced Search

Filters: Tags: SNOW WATER EQUIVALENT (X) > Categories: Data (X)

74 results (41ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Ground-based discrete snowpack measurements were collected during winter field campaigns starting in 2020. These data were collected as part of the U.S. Geological Survey (USGS) Next Generation Water Observing System (NGWOS) Upper Colorado River Basin project focusing on the relation between snow dynamics and water resources. This data release consists of three child items. Each child item contains snow depth, snow density, snow temperature, or snow water equivalent values measured discretely in the field. The data are provided in comma separated value (CSV) files.
thumbnail
The Database was built to enable data integration across sources, as well as to support program planning and observational network design. The Imiq Data Portal provides a snapshot of available hydroclimate data – a map-based view of where , what , and when data have been obtained. Users can submit a custom data query, specifying variable of interest, geographic bounds, and time step. Imiq will aggregate and export data records from multiple sources in a common format, with full metadata records that provide information about the source data.
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: ABLATION, ABLATION, ACTIVE LAYER, ACTIVE LAYER, ALBEDO, All tags...
thumbnail
Mean modeled snow-water-equivalent (meters) on February 20, the date of peak basin-integrated mean modeled snow-water-equivalent (meters) for the T4 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
The percentage difference between mean modeled snow-water-equivalent (meters) on April 1 for the reference (1989-2011) climate period and mean modeled snow-water-equivalent on April 1 for the T4 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
This dataset includes Snow Free Date(sfdy) for northern Alaska in GeoTiff format, covering the years 1980-2012. Snow Free Date is defined as day of the end of the core snow period(day of year). The core snow season is defined to be the longest period of continuous snow cover in each year. The dataset was generated by the Arctic LCC SNOWDATA: Snow Datasets for Arctic Terrestrial Applications project.“Day-of-year” (doy) output is expressed in Ordinal dates (“1” on 1 January, and “365” on 31 December). Dates have not been corrected for leap years. This output is appropriate for display purposes, as it is readily interpreted as calendar day of year. It is not recommended as input for analysis, as it may produce incorrect...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: AIR TEMPERATURE, AIR TEMPERATURE, ALBEDO, ALBEDO, Academics & scientific researchers, All tags...
thumbnail
This dataset includes Snow Depth(snod) for northern Alaska in GeoTiff format, covering the years 1980-2012. Snow Depth is defined as depth on 1 March(m). The dataset was generated by the Arctic LCC SNOWDATA: Snow Datasets for Arctic Terrestrial Applications project.The dataset is delivered in the ZIP archive file format. Each year is output in a separate GeoTiff file, where the year is indicated by the filename.Over the last 20 years, under a variety of NOAA, NSF, and NASA research programs, a snow-evolution modeling system has been developed that includes the MicroMet micrometeorological model, the SnowModel snow-process model, and the SnowAssim data assimilation model. These modeling tools can be thought of as...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: AIR TEMPERATURE, AIR TEMPERATURE, ALBEDO, ALBEDO, Academics & scientific researchers, All tags...
thumbnail
The absolute difference between mean modeled snow-water-equivalent on March 28 for the reference period and mean modeled snow-water-equivalent on February 20 for the T4P10 climate change scenario, which are the dates of peak basin-integrated SWE for each period, respectively.Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4P10 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record, and +10% precipitation to each daily precipitation record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
The percentage difference between mean modeled snow-water-equivalent (meters) on April 1 for the reference (1989-2011) climate period and mean modeled snow-water-equivalent on April 1 for the T2 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T2 scenario: the observed historical (reference period) meteorology is perturbed by adding +2°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
Mean modeled snow-water-equivalent (meters) on March 13, the date of peak basin-integrated mean modeled snow-water-equivalent (meters) for the T2 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T2 scenario: the observed historical (reference period) meteorology is perturbed by adding +2oC to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
The Imiq Hydroclimate Database houses hydrologic, climatologic, and soils data collected in Alaska and Western Canada from the early 1900s to the present. This database unifies and preserves numerous data collections that have, until now, been stored in field notebooks, on desktop computers, as well as in disparate databases. Synthesizing and analyzing the large-scale hydroclimate characteristics of this important climatic region have been made easier with this searchable database. The data, originally collected in a Microsoft SQL Server 2008 relational database, has been migrated to an open source PostgreSQL and PostGIS environment. The Imiq Data Portal provides public access to portions of the Imiq Hydroclimate...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: ABLATION, ABLATION, ACTIVE LAYER, ACTIVE LAYER, ALBEDO, All tags...
thumbnail
The absolute difference between mean modeled snow-water-equivalent (meters) on April 1 for the reference (1989-2011) climate period and mean modeled snow-water-equivalent on April 1 for the T4P10 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4P10 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record, and +10% precipitation to each daily precipitation record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
This dataset includes Snow Up Date(sudt) for northern Alaska in GeoTiff format, covering the years 1980-2012. Snow Up Date is defined as day of the start of the core snow period(day of simulation). The core snow season is defined to be the longest period of continuous snow cover in each year. The dataset was generated by the Arctic LCC SNOWDATA: Snow Datasets for Arctic Terrestrial Applications project.The simulation period runs from 1 September – 31 August. “Day-of-simulation” takes the value of “1” on 1 September, “123” on 1 January, and “365” on 31 August. “Day-of-simulation” files should be used for analysis (trend, mean, etc.).The dataset is delivered in the ZIP archive file format. Each year is output in a...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: AIR TEMPERATURE, AIR TEMPERATURE, ALBEDO, ALBEDO, Academics & scientific researchers, All tags...
thumbnail
The absolute difference between mean modeled snow-water-equivalent on March 28 for the reference period and mean modeled snow-water-equivalent on March 13 for the T2P10 climate change scenario, which are the dates of peak basin-integrated SWE for each period, respectively. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T2P10 scenario: the observed historical (reference period) meteorology is perturbed by adding +2°C to each daily temperature record, and +10% precipitation to each daily precipitation record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
The absolute difference between mean modeled snow-water-equivalent on March 28 for the reference period and mean modeled snow-water-equivalent on March 13 for the T2P10 climate change scenario, which are the dates of peak basin-integrated SWE for each period, respectively. Reference period: the period 1989 – 2009 for the McKenzie River Basin domain, and 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T2P10 scenario: the observed historical (reference period) meteorology is perturbed by adding +2°C to each daily temperature record, and +10% precipitation to each daily precipitation record in the reference period meteorology, and this data...
thumbnail
Mean modeled snow-water-equivalent (meters) on April 1 for the T2 climate change scenario. T2 scenario: the observed historical (reference period) meteorology is perturbed by adding +2°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
The absolute difference between mean modeled snow-water-equivalent on March 28 for the reference period and mean modeled snow-water-equivalent on February 20 for the T4 climate change scenario, which are the dates of peak basin-integrated SWE for each period, respectively. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
Mean modeled snow-water-equivalent (meters) on February 20, the date of peak basin-integrated mean modeled snow-water-equivalent (meters) for the T4P10 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4P10 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record, and +10% precipitation to each daily precipitation record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
Climate change information simulated by global climate models is downscaled using statistical methods to translate spatially course regional projections to finer resolutions needed by researchers and managers to assess local climate impacts. Several statistical downscaling methods have been developed over the past fifteen years, resulting in multiple datasets derived by different methods. We apply a simple monthly water-balance model (MWBM) to demonstrate how the differences among these datasets result in disparate projections of snow loss and future changes in runoff. We apply the MWBM to six statistically downscaled datasets for 14 general circulation models (GCMs) from the Climate Model Intercomparison Program...
thumbnail
Mean modeled snow-water-equivalent (meters) on March 28, the date of peak basin-integrated mean modeled snow-water-equivalent (meters) for the reference climate period. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input.
thumbnail
The absolute difference between mean modeled snow-water-equivalent (meters) on April 1 for the reference (1989-2011) climate period and mean modeled snow-water-equivalent on April 1 for the T2 climate change scenario. Reference period: the period 1989 – 2009 for the McKenzie River Basin domain for which observed historical meteorology is used for model input. T2 scenario: the observed historical (reference period) meteorology is perturbed by adding +2°C to each daily temperature record in the reference period meteorology, and this data is then used as inputs to the model.


map background search result map search result map Modeled snow-water-equivalent, absolute difference between April 1 historical and projected values under T2 climate change scenario, McKenzie River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference between seasonal peak historical and projected values under T2p10 climate change scenario, McKenzie River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference in historical and projected April 1 values under T4P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, percent difference between historical and projected April 1 values under T2 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, percent difference between historical and projected April 1 values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected April 1 values under T2 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference in historical and projected seasonal peak values under T2P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference in historical and projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference in historical and projected seasonal peak values under T4P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, historical seasonal peak values, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T2 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Imiq - Hydroclimate Database and Data Portal SNOWDATA GeoTIFF Annual Snow Free Date (year) SNOWDATA GeoTIFF Annual Snow Depth SNOWDATA GeoTIFF Annual Snow Up Date Imiq Data Portal Data Release for The dependence of hydroclimate projections in snow-dominated regions of the western U.S. on the choice of statistically downscaled climate data NGWOS Ground Based Discrete Snowpack Measurements Modeled snow-water-equivalent, absolute difference in historical and projected April 1 values under T4P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, percent difference between historical and projected April 1 values under T2 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, percent difference between historical and projected April 1 values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected April 1 values under T2 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference in historical and projected seasonal peak values under T2P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference in historical and projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference in historical and projected seasonal peak values under T4P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, historical seasonal peak values, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T2 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4P10 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference between April 1 historical and projected values under T2 climate change scenario, McKenzie River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, absolute difference between seasonal peak historical and projected values under T2p10 climate change scenario, McKenzie River Basin, Oregon [full and clipped versions] NGWOS Ground Based Discrete Snowpack Measurements SNOWDATA GeoTIFF Annual Snow Free Date (year) SNOWDATA GeoTIFF Annual Snow Depth SNOWDATA GeoTIFF Annual Snow Up Date Imiq - Hydroclimate Database and Data Portal Imiq Data Portal Data Release for The dependence of hydroclimate projections in snow-dominated regions of the western U.S. on the choice of statistically downscaled climate data