Skip to main content
Advanced Search

Filters: Tags: Salcha River (X) > partyWithName: Water Resources (X)

6 results (8ms)   

View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey obtained measurements of channel geometry, flow velocity, and river discharge from five rivers in Alaska September 18–20, 2016, to support research on remote sensing of river discharge. The streamflow data were acquired from the Knik, Matanuska, Chena, and Salcha Rivers and Montana Creek using TeleDyne RD Instruments Acoustic Doppler Current Profilers (ADCPs), including the RioPro, StreamPro, and RiverRay models. The original *.mmt and *.pd0 format files are provided in this data release. This data release supports the following article: Legleiter, C.J., Kinzel, P.J., and Nelson, J.M., 2017, Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various...
thumbnail
This data release includes field measurements of flow depth and optical image sequences acquired from the Salcha River in Alaska on July 25, 2019. These data were used to develop and test a spectrally based remote sensing technique for estimating water depth from passive optical image data. The purpose of this study was to assess the feasibility of inferring water depths from optical image sequences acquired from a helicopter hovering above the river by averaging the images over time and then establishing a correlation between a spectral band ratio and field measurements of depth, and to develop a modular workflow for performing this type of analysis. Remote sensing of river bathymetry (depth) could provide a...
thumbnail
This data release includes field measurements of flow velocity and optical image sequences used to derive remotely sensed estimates of surface flow velocities via particle image velocimetry (PIV) from two rivers in Alaska. These data were acquired from the Salcha River on August 31, 2018, and the Tanana River on July 24, 2019. The purpose of this study was to assess the feasibility of inferring flow velocities from optical image sequences acquired from a helicopter hovering above each river by tracking water surface features via various PIV algorithms and to develop a modular workflow for performing this type of analysis. Remote sensing of flow velocity could provide a more efficient, cost-effective alternative...
thumbnail
The U.S. Geological Survey collected field spectra collected from three rivers in Alaska September 19–21, 2016, to support research on remote sensing of river discharge. Reflectance measurements were made from bridges across the Chena River, Salcha River, and Montana Creek using an Analytical Spectral Devices FieldSpec3 spectroradiometer operated in reflectance mode. The original *.asd files are provided in this data release. This data release supports the following article: Legleiter, C.J., Kinzel, P.J., and Nelson, J.M., 2017, Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information: Journal of Hydrology, v. 554, p. 490-506, https://doi.org/10.1016/j.jhydrol.2017.09.004.
thumbnail
The U.S. Geological Survey in collaboration with the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) collected topographic LiDAR surveys of four rivers in Alaska from July 24-26, 2019 to support research related to remote sensing of river discharge. Data were acquired for the Matanuska, Chena, Salcha, and Tanana Rivers using a Riegl VQ-580 LiDAR. The LiDAR was installed on a Robinson R44 Raven helicopter in a HeliPod that was designed and operated by CRREL. The LiDAR data included as part of this release include: a bare earth digital elevation model (DEM) in GeoTiff format and lidar point files in laz format for each river surveyed. Additionally, CRREL reports for each river...
thumbnail
The U.S. Geological Survey collected thermal image time series from five rivers in Alaska September 18–20, 2016, to support research on remote sensing of river discharge. The image time series were acquired from bridges across the Knik, Matanuska, Chena, and Salcha Rivers and Montana Creek using a FLIR SC8340 mid-infrared (3–5 microns) camera operated at a rate of 10 frames/second. The original FLIR *.ast format video files are provided in this data release. This data release supports the following article: Legleiter, C.J., Kinzel, P.J., and Nelson, J.M., 2017, Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information: Journal of Hydrology,...


    map background search result map search result map Field spectra from rivers in Alaska, September 19–21, 2016 Thermal image time series from rivers in Alaska, September 18–20, 2016 ADCP data from rivers in Alaska, September 18–20, 2016 Topographic LiDAR surveys of rivers in Alaska, July 24-26, 2019 Field measurements of flow velocity and optical image sequences acquired from the Salcha and Tanana Rivers in Alaska in 2018 and 2019 and used for particle image velocimetry (PIV) Field measurements of flow depth and optical image sequences acquired from the Salcha River, Alaska, on July 25, 2019 Field measurements of flow depth and optical image sequences acquired from the Salcha River, Alaska, on July 25, 2019 Field measurements of flow velocity and optical image sequences acquired from the Salcha and Tanana Rivers in Alaska in 2018 and 2019 and used for particle image velocimetry (PIV) Thermal image time series from rivers in Alaska, September 18–20, 2016 ADCP data from rivers in Alaska, September 18–20, 2016 Topographic LiDAR surveys of rivers in Alaska, July 24-26, 2019 Field spectra from rivers in Alaska, September 19–21, 2016